“拨开迷雾看人工智能”-3分钟带你看懂神秘的神经网络

  上一期,我们为你介绍了什么是机器学习和深度学习,今天我们给你讲一讲神秘的神经网络。

  神经网络,全称是人工神经网络,顾名思义这是从人类中枢神经系统受到的启发,发明了人工神经网络这个概念。在人工神经网络中,简单的人工节点,称作神经元,连接在一起形成一个类似生物神经网络的网状结构。

  神经网络是我们上节课介绍的深度学习的基础,这是一门强大的机器学习方法,可以这么说,正是神经网络快速发展带来的变革,引发了今天人工智能潮流的火爆

那么,什么是神经网络?

  神经网络最重要的用途是分类,为了让你对分类有个直观的认识,我们先看几个例子:

  猫狗分类:有一大堆猫、狗照片,把每一张照片送进一个机器里,机器需要判断这幅照片里的东西是猫还是狗。

  广告识别:现在有一封电子邮件,把出现在里面的所有词汇提取出来,送进一个机器里,机器需要判断这封邮件是否是营销广告邮件。

  影像识别:病人把在医院照的X光影像片交给医生,医生把照片送进一个机器里,机器需要判断这个病人是否得病,得的什么病。

  这种能自动对输入的东西进行分类的机器,就叫做分类器

  分类器的输入和输出都是一堆数值,比如第一个例子里,分类器的输入是照片,假如每一张照片都是100*100像素的红绿蓝三通道彩色照片,那么分类器的输入就是一个长度为100*100*3=30000的向量。输出的时候,0则表示图片中是狗,输出1则表示是猫。

  分类器的目标就是让正确分类的比例尽可能高。一般我们需要首先收集一些样本,人为标记上正确分类结果,然后用这些标记好的数据训练分类器,训练好的分类器就可以在新来的数据上工作了。

  好,现在我们以输出猫和狗为例,假设分类器的输入是通过某种途径获得的两个值,输出是0和1,比如分别代表猫和狗。现在有一些样本:

  大家想想,最简单地把这两组特征向量分开的方法是啥?当然是在两组数据中间画一条竖直线,直线左边是狗,右边是猫,分类器就完成了。以后来了新的向量,凡是落在直线左边的都是狗,落在右边的都是猫(如下图)。

  一条直线把平面一分为二,一个平面把三维空间一分为二,两边分属不同的两类,这种分类器就叫做神经元。

  上图的分类器好分,但是下图呢?

  当样本的复杂程度增加的时候,一个神经元只能切一刀的缺点就会显露。这时的解决办法是多层神经网络,底层神经元的输出是高层神经元的输入。我们可以在中间横着砍一刀,竖着砍一刀,然后把左上和右下的部分合在一起,与右上的左下部分分开;也可以围着左上角的边沿砍10刀把这一部分先挖出来,然后和右下角合并。

  每砍一刀,其实就是使用了一个神经元,把不同砍下的半平面做交、并等运算,就是把这些神经元的输出当作输入,后面再连接一个神经元。这个例子中特征的形状称为异或,这种情况一个神经元搞不定,但是两层神经元就能正确对其进行分类。只要你能砍足够多刀,把结果拼在一起,什么奇怪形状的边界神经网络都能够表示,所以说神经网络在理论上可以表示很复杂的函数/空间分布

  最后我们来说一下神经网络的训练。它依靠反向传播算法:最开始输入层输入特征向量,网络层层计算获得输出,输出层发现输出和正确的类号不一样,这时它就让最后一层神经元进行参数调整,最后一层神经元不仅自己调整参数,还会勒令连接它的倒数第二层神经元调整,层层往回退着调整。经过调整的网络会在样本上继续测试,如果输出还是老分错,继续来一轮回退调整,直到网络输出满意为止。这有点像小米式互联网思维,从用户终端听取意见,优化需求更新产品功能,最终做出用户喜欢的,强参与感的智能手机。

  如果形象地打个比方,神经网络就像一个刚开始学习东西的小孩子,开始认东西,作为一个大人(监督者),第一天,他看见一只京巴狗,你告诉他这是狗;第二天他看见一只波斯猫,他开心地说,这是狗,纠正他,这是猫;第三天,他看见一只蝴蝶犬,他又迷惑了,你告诉他这是狗……直到有一天,他可以分清任何一只猫或者狗。

  这就是神经网络,你看懂了么?


小结:

  神经网络是一种把东西进行分类的机器,它由若干个神经元组成。每个神经元就像一把剪刀,可以把两组数据一分为二;若干个神经元经过剪切、拼接、粘贴之后,最终可以把两个东西区分开(例如区分猫和狗),这就是神经网络。

预告:

  下一期,我们将向你介绍神奇的蒙特卡罗算法,结合神经网络,可以为你解析AlaphaGo的工作原理。

  如果你感兴趣,请留意关注微信公众号:智能加研究院

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,014评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,796评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,484评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,830评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,946评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,114评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,182评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,927评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,369评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,678评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,832评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,533评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,166评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,885评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,128评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,659评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,738评论 2 351

推荐阅读更多精彩内容