[Python] 多进程 多线程 协程及其延伸 代码实例

转载请注明:陈熹 chenx6542@foxmail.com (简书号:半为花间酒)
若公众号内转载请联系公众号:早起Python

很多时候我们写了一个爬虫,实现了目的后会发现了很多值得改进的地方,其中一点就是爬取速度
今天就利用多个库实现多进程 多线程 协程加速爬取信息

本文对不深入介绍理论和原理,一切都在代码中


注:为了方便说明问题,下文代码中如果是新增加的部分,代码行前会加上 > 符号便于观察说明问题,实际运行需要去掉


一、同步

首先我们写一个简化的爬虫,对各个功能细分,有意识进行函数式编程

下面代码的目的是访问200次百度页面并返回状态码
parse_1函数可以设定循环次数,每次循环将url传入parse_2函数。

import requests

def parse_1():
    url = 'https://www.baidu.com'
    for i in range(300):
        parse_2(url)

def parse_2(url):
    response = requests.get(url)
    print(response.status_code)

if __name__ == '__main__':
    parse_1()

性能的消耗主要在IO请求中,当单进程单线程模式下请求URL时必然会引起等待

示例代码就是典型的串行逻辑,parse_1将url传递给parse_2,parse_2请求并返回状态码后parse_1继续迭代一次,重复之前步骤

二、多线程

因为CPU在执行程序时每个时间刻度上只会存在一个线程,因此多线程实际上提高了进程的使用率从而提高了CPU的使用率

实现多线程的库有很多,这里用concurrent.futures中的ThreadPoolExecutor来演示。介绍ThreadPoolExecutor库是因为它相比其他库,代码更简洁

import requests
> from concurrent.futures import ThreadPoolExecutor

def parse_1():
    url = 'https://www.baidu.com'
    # 建立线程池
    > pool = ThreadPoolExecutor(6)
    for i in range(300):
        > pool.submit(parse_2, url)
    > pool.shutdown(wait=True)

def parse_2(url):
    response = requests.get(url)
    print(response.status_code)

if __name__ == '__main__':
    parse_1()

跟同步相对的就是异步

异步就是彼此独立,在等待某事件的过程中继续做自己的事,不需要等待这一事件完成后再工作。线程就是实现异步的一个方式,也就是说多线程是异步处理

异步就意味着不知道处理结果,有时候我们需要了解处理结果,就可以采用回调

import requests
from concurrent.futures import ThreadPoolExecutor

# 增加回调函数
> def callback(future):
    > print(future.result())

def parse_1():
    url = 'https://www.baidu.com'
    pool = ThreadPoolExecutor(6)
    for i in range(300):
        > results = pool.submit(parse_2, url)
        # 回调的关键步骤
        > results.add_done_callback(callback)
    pool.shutdown(wait=True)

def parse_2(url):
    response = requests.get(url)
    print(response.status_code)

if __name__ == '__main__':
    parse_1()

python实现多线程有一个无数人诟病的GIL(全局解释器锁),但多线程对于爬取网页这种多数属于IO密集型的任务依旧很合适

三、多进程

多进程用两个方法实现:ProcessPoolExecutor和multiprocessing

1. ProcessPoolExecutor

和实现多线程的ThreadPoolExecutor类似

import requests
> from concurrent.futures import ProcessPoolExecutor

def parse_1():
    url = 'https://www.baidu.com'
    # 建立线程池
    > pool = ProcessPoolExecutor(6)
    for i in range(300):
        > pool.submit(parse_2, url)
    > pool.shutdown(wait=True)

def parse_2(url):
    response = requests.get(url)
    print(response.status_code)

if __name__ == '__main__':
    parse_1()

可以看到改动了两次类名,代码依旧很简洁

同理也可以添加回调函数

import requests
from concurrent.futures import ProcessPoolExecutor

> def callback(future):
    > print(future.result())

def parse_1():
    url = 'https://www.baidu.com'
    pool = ProcessPoolExecutor(6)
    for i in range(300):
        > results = pool.submit(parse_2, url)
        > results.add_done_callback(callback)
    pool.shutdown(wait=True)

def parse_2(url):
    response = requests.get(url)
    print(response.status_code)

if __name__ == '__main__':
    parse_1()
2. multiprocessing
import requests
> from multiprocessing import Pool

def parse_1():
    url = 'https://www.baidu.com'
    # 建池
    > pool = Pool(processes=5) 
    # 存放结果
    > res_lst = []
    for i in range(300):
        # 把任务加入池中
        > res = pool.apply_async(func=parse_2, args=(url,))
        # 获取完成的结果(需要取出)
        > res_lst.append(res)
    # 存放最终结果(也可以直接存储或者print)
    > good_res_lst = [] 
    > for res in res_lst:
        # 利用get获取处理后的结果
        > good_res = res.get()
        # 判断结果的好坏
        > if good_res:
            > good_res_lst.append(good_res)
    # 关闭和等待完成
    > pool.close()
    > pool.join()

def parse_2(url):
    response = requests.get(url)
    print(response.status_code)

if __name__ == '__main__':
    parse_1()

可以看到multiprocessing库的代码稍繁琐,但支持更多的拓展

多进程和多线程确实能够达到加速的目的,但如果遇到IO阻塞会出现线程或者进程的浪费,因此有一个更好的方法……

四、异步非阻塞

协程+回调配合动态协作就可以达到异步非阻塞的目的,本质只用了一个线程,所以很大程度利用了资源

实现异步非阻塞经典是利用asyncio库+yield,为了方便利用逐渐出现了更上层的封装 aiohttp,要想更好的理解异步非阻塞最好还是深入了解asyncio库

gevent是一个非常方便实现协程的库

import requests
> from gevent import monkey
# 猴子补丁是协作运行的灵魂
> monkey.patch_all()
> import gevent

def parse_1():
    url = 'https://www.baidu.com'
    # 建立任务列表
    > tasks_list = []
    for i in range(300):
        > task = gevent.spawn(parse_2, url)
        > tasks_list.append(task)
    > gevent.joinall(tasks_list)

def parse_2(url):
    response = requests.get(url)
    print(response.status_code)

if __name__ == '__main__':
    parse_1()

gevent能很大提速,也引入了新的问题:
如果我们不想速度太快给服务器造成太大负担怎么办?

如果是多进程多线程的建池方法,可以控制池内数量。如果用gevent想要控制速度也有一个不错的方法:建立队列

gevent中也提供了Quene类,下面代码改动较大

import requests
from gevent import monkey
monkey.patch_all()
import gevent
> from gevent.queue import Queue

def parse_1():
    url = 'https://www.baidu.com'
    tasks_list = []
    for i in range(300):
        # 全部url压入队列
        > quene.put_nowait(url)
    # 两路队列
    > for _ in range(2):
        > task = gevent.spawn(parse_2)
        > tasks_list.append(task)
    gevent.joinall(tasks_list)

# 不需要传入参数,都在队列中
> def parse_2():
    # 循环判断队列是否为空
    > while not quene.empty():
        # 弹出队列
        > url = quene.get_nowait()
        response = requests.get(url)
        # 判断队列状态 
        > print(quene.qsize(), response.status_code)

if __name__ == '__main__':
# 实例化队列
    > quene = Queue()
    parse_1()

写在最后:

以上就是几种常用的加速方法。如果对代码测试感兴趣可以利用time模块判断运行时间

爬虫的加速是重要技能,但适当控制速度也是爬虫工作者的良好习惯,不要给服务器太大压力


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,185评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,445评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,684评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,564评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,681评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,874评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,025评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,761评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,217评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,545评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,694评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,351评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,988评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,778评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,007评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,427评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,580评论 2 349

推荐阅读更多精彩内容