五大经典算法之回溯法

一、基本概念

  回溯法,又称为试探法,按选优条件向前不断搜索,以达到目标。但是当探索到某一步时,如果发现原先选择并不优或达不到目标,就会退回一步重新选择,这种达不到目的就退回再走的算法称为回溯法。

与穷举法的区别和联系:
相同点:它们都是基于试探的。
区别:穷举法要将一个解的各个部分全部生成后,才检查是否满足条件,若不满足,则直接放弃该完整解,然后再尝试另一个可能的完整解,它并没有沿着一个可能的完整解的各个部分逐步回退生成解的过程。而对于回溯法,一个解的各个部分是逐步生成的,当发现当前生成的某部分不满足约束条件时,就放弃该步所做的工作,退到上一步进行新的尝试,而不是放弃整个解重来。

二、基本思想

  对于可以使用回溯法来解决的问题,首先可以将其解空间可以看成一棵解空间树。在回溯法中,每次扩大当前部分解时,都面临一个可选的状态集合(所有的子树),每个树结点代表一个可能的部分解。
  回溯法对任一解的生成,一般都采用逐步扩大解的方式。每前进一步,都试图在当前部分解的基础上扩大该部分解。它在问题的状态空间树中,从开始结点(根结点)出发,以深度优先搜索整个状态空间。这个开始结点成为活结点,同时也成为当前的扩展结点。在当前扩展结点处,搜索向纵深方向移至一个新结点。这个新结点成为新的活结点,并成为当前扩展结点。如果在当前扩展结点处不能再向纵深方向移动,则当前扩展结点就成为死结点。此时,应往回移动(回溯)至最近的活结点处,并使这个活结点成为当前扩展结点。回溯法以这种工作方式递归地在状态空间中搜索,直到找到所要求的解或解空间中已无活结点时为止。

三、解题步骤(思路)

  1. 针对给定的问题,定义问题的解空间;
  2. 确定易于搜索的解空间结构;
  3. 以深度优先方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索。(这里的剪枝函数就是判断该结点是否满足问题题设,如果满足则向下搜索,不满足则在此剪枝

四、算法框架

1. 递归实现:
 变量解释:
  x:存储试探解的数组
  n:解空间树的层数
  i:搜索目前所达到的层数
  start:子节点解空间的最小值
  end:子节点解空间的最大值

int x[n];
void backtrack (int i) {
    if (i > n) {
       回溯结束; 
    } else {
        // 这里回溯子节点的解空间为start~end
       for (j = start; j <= end; j++) {
            // 满足条件,向下搜索
            if (j满足题设条件) {
                x[i] = j;
                backtrack(i+1);
            // 不满足条件,在此剪枝(即回溯)
            } else {
            }
       }
   }
}   

2. 非递归实现:
 变量解释:
  x:存储试探解的数组
  n:解空间树的层数
  i:搜索目前所达到的层数
  start:子节点解空间的最小值
  end:子节点解空间的最大值

void f_backtrack(int i) {
  //初始化解向量
  for (int j = 0; j < n; j++) {
    x[j] = 1;
  }
  while (i >= 1) {
    while (x[i] <= n) {
      if (place(i)) {
        if (i == n) {
          回溯结束;
          break;
        // 满足条件,向下搜索
        } else {
          i++;
          x[i] = 1;
        }
      // 不满足条件,在此剪枝(即回溯)
      } else {
        x[i]++;
      }
    }
    //遍历完子节点解空间后,向上剪枝(即回溯)
    x[i] = 1;
    i--;
    x[i]++;
  }
}  

相比之下,递归设计方法比较简单,而非递归方法,也就是循环方法设计细节比较多,但如果掌握了其特点,对不同问题的适用性很强(即代码只需要很少的修改就可以应用到不同问题),加之其最大的优势:效率更高(因为递归的实现是通过调用函数本身,函数调用的时候,每次调用时要做地址保存,参数传递等,这是通过一个递归工作栈实现的。具体是每次调用函数本身要保存的内容包括:局部变量、形参、调用函数地址、返回值。那么,如果递归调用N次,就要分配N局部变量、N形参、N调用函数地址、N返回值。这势必是影响效率的。)

五、经典实现

经典问题:八皇后问题
  八皇后问题,是一个古老而著名的问题,是回溯算法的典型例题。该问题是十九世纪著名的数学家高斯1850年提出:
  在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上(斜率为1),问有多少种摆法。高斯认为有76种方案。1854年在柏林的象棋杂志上不同的作者发表了40种不同的解,后来有人用图论的方法解出92种结果。

递归实现为以下代码中backtrack方法
非递归实现为以下代码中f_backtrack方法:

#include <iostream>
using namespace std;
int n;
int *x;
int sum;
bool place(int k)
{
  for (int j = 1; j < k; j++)
    if (abs(x[k] - x[j]) == abs(k - j) || x[j] == x[k])
      return false;
  return true;
}

void output()
{
  sum++; //sum为所有的可行的解
  for (int m = 1; m <= n; m++)
  {
    cout << "<" << m << "," << x[m] << ">"; //这一行用输出当递归到叶节点的时候,一个可行解
  }
  cout << endl;
}

void f_backtrack(int i)
{
  for (int j = 0; j < n; j++)
  { //初始化解向量
    x[j] = 1;
  }
  while (i >= 1)
  {
    while (x[i] <= n)
    {
      if (place(i))
      { //得到可行解
        if (i == n)
        {
          output();
          break;
        } //得到最终可行解,退出
        else
        { //得到部分可行解,搜索下一行
          i++;
          x[i] = 1;
        }
      }
      else
      { //当前解不可行
        x[i]++;
      }
    }
    x[i] = 1;
    i--;
    x[i]++; //回溯
  }
}

void backtrack(int i)
{
  if (i > n)
  {
    output();
  }
  else
  {
    for (int j = 1; j <= n; j++)
    {
      x[i] = j;
      if (place(i))
      {
        backtrack(i + 1);
      }
      else
      {
      }
    }
  }
}

int main()
{
  n = 8;
  sum = 0;
  x = new int[n + 1];
  for (int i = 0; i <= n; i++)
    x[i] = 0;
  backtrack(1);
  cout << "方案共有" << sum << endl;
} 
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,732评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,496评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,264评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,807评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,806评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,675评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,029评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,683评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,704评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,666评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,773评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,413评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,016评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,204评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,083评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,503评论 2 343

推荐阅读更多精彩内容

  • 分治算法 一、基本概念 在计算机科学中,分治法是一种很重要的算法。字面上的解释是“分而治之”,就是把一个复杂的问题...
    木叶秋声阅读 5,285评论 0 3
  • 五大常用算法之一:分治算法 基本概念: 把一个复杂的问题分成两个或更多的相同的或相似的子问题。再把子问题分成更小的...
    親愛的破小孩阅读 4,855评论 0 1
  • 回溯法与分支限界法 时间 2016-03-24 标签 搜索 回溯法 1、概念 回溯算法实际上一个类似枚举的搜索尝...
    wangchuang2017阅读 2,316评论 0 4
  • 做了一个很让我难过的梦 有这样一群人 在濒临死亡的时候,会被外星人救走 身体上某些部分会被改造 唯一的好处,就是你...
    仇燃阅读 215评论 0 0
  • 170511 结束了研究生生涯的所有课程。 队内评分让我有些烦躁,总是不能做那个有态度的人让我有一种迷失感。 下午...
    XxXxXxN阅读 175评论 0 0