如何5分钟快速搭建智能问答系统

最近小马在搞AI,目标是实现一个智能问答系统来支撑业务。经过了之前一段时间的基础AI技术学习后,小马开始NLP并调研智能问答系统。本文介绍如何5分钟快速搭建一个智能问答系统。亲测效果良好。

典型的QA 系统包括在线客户服务系统、QA 聊天机器人等。大多数问答系统可以分为:生成式或检索式、单轮或多轮、开放域或特定问答系统。

传统的问答机器人大都是基于规则的知识图谱方式实现,这种方式需要对大量的语料进行分类整理。

基于深度学习模型的实现方式可以彻底摆脱对语料的预处理,只需提供问题和答案的对应关系,通过自然语言处理的语义分析模型对问题库提取语义特征向量存入Milvus中,然后对提问的问题也进行语义特征向量提取,通过对向量特征的匹配就可以实现自动回复,轻松实现智能客服等应用。

一、理论准备

如何5分钟快速搭建一个智能问答系统,小马最初受到启发的是这个视频教程《5分钟搭建智能问答系统》,文章《快速搭建对话机器人,就用这一招!》--有比较清晰的原理描述,但是发现教程中的项目版本已经过旧,而且资源已经被下架,所以视频仅供参考。于是顺藤摸瓜,找到最新的相关教程github地址,跟着这个教程走。(加载中文模型的参考文章《bootcamp问答系统部署》

我们先来看看这个项目的描述。

This project combines Milvus and BERT to build a question and answer system. This aims to provide a solution to achieve semantic similarity matching with Milvus combined with AI models.

直译为:

本项目结合 Milvus 和 BERT 构建问答系统。旨在提供一种解决方案,通过 Milvus 结合 AI 模型实现语义相似度匹配。

Milvus是什么?

Milvus是一款全球领先的开源向量数据库,赋能 AI 应用和向量相似度搜索,加速非结构化数据检索。

BERT 是什么?

BERT是Google开发的一种基于Transformer的机器学习技术,用于自然语言处理(NLP) 预训练。

这里有一个BERT相关视频教程《BERT从零详细解读,看不懂来打我》,涉及AE输入形式  mask模型,其使用到概率学,所以无监督学习依赖于训练数据,需要从训练数据中计算概率。

BERT是一个多任务模型,它的任务是由两个自监督任务组成,即MLM和NSP。Next Sentence Prediction(NSP)的任务是判断句子B是否是句子A的下文。相关还有教程12

BERT其中的一个重要作用是可以生成词向量,它可以解决word2vec中无法解决的一词多义问题。获取完BERT词向量后还可以结合CNN、RNN等模型来实现自己的任务。

我们现在可以来看下系统的架构原理图

Question Answering Engine

该系统可以将新的用户问题与先前存储在向量数据库中的大量答案联系起来。要构建这样的聊天机器人,请准备您自己的问题数据集和相应的答案。将问题和答案存储在关系数据库 MySQL 中。然后使用用于自然语言处理 (NLP) 的机器学习 (ML) 模型 BERT 将问题转换为向量。这些问题向量在 Milvus 中存储和索引。当用户输入一个新问题时,BERT 模型也会将其转换为一个向量,Milvus 会搜索与这个新向量最相似的问题向量。问答系统对最相似的问题返回相应的答案

系统会使用 Milvus 存储和搜索特征向量数据,Mysql 用于存储 Milvus 返回的 id 与问题数据集的对应关系,此时需要先启动 Milvus 和 Mysql。

二、快速部署

因为本篇之前没写详细,又想保留着本文评论笔记所以不想删文,于是重新整理了一份完整内容的:传送门

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
禁止转载,如需转载请通过简信或评论联系作者。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,837评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,551评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,417评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,448评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,524评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,554评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,569评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,316评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,766评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,077评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,240评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,912评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,560评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,176评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,425评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,114评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,114评论 2 352

推荐阅读更多精彩内容