《人工智能》(一):min-max算法

一 minmax

转载至:好想养只小短腿:
https://www.zhihu.com/question/27221568/answer/140874499

先来说极小极大算法主要应用于什么样的游戏:1. 零和游戏(Zero-Sum Game):意思就是你死我活,一方的胜利代表另一方的失败,比如,象棋,五子棋等。2. 完全信息(Perfect Information):玩家知道之前所有的步骤。象棋就是完全信息,因为玩家是交替着落子,且之前的步骤都能在棋盘上体现,但是石头剪子布就不是。这样的游戏通常可以把他们看作一个树状图,把每一种可能性列出来。比如下面这个井字棋游戏,Max代表你自己,Min代表你的对手。
这个时候我们需要给每一种结果一个分数,就是这里的Utility。这个分数是站在我自己(也就是Max)的角度评估的,比如上图中我赢了就是+1,输了是-1,平局时0。所以,我希望最大化这个分数,而我的对手希望最小化这个分数。(在游戏中,这个分数被称为static value。)这里要说一下,井字棋是个比较简单的游戏,所以可以列出所有可能的结果。但是,大部分游戏是不太可能把所有结果都列出来的。根据计算机运算量,我们可能只能往前推7,8步,所以这个时候分数就不只-1,1,0这么简单了,会有专门的算法来根据当前结果给不同的分数。


这个时候我们需要给每一种结果一个分数,就是这里的Utility。这个分数是站在我自己(也就是Max)的角度评估的,比如上图中我赢了就是+1,输了是-1,平局时0。所以,我希望最大化这个分数,而我的对手希望最小化这个分数。(在游戏中,这个分数被称为static value。)这里要说一下,井字棋是个比较简单的游戏,所以可以列出所有可能的结果。但是,大部分游戏是不太可能把所有结果都列出来的。根据计算机运算量,我们可能只能往前推7,8步,所以这个时候分数就不只-1,1,0这么简单了,会有专门的算法来根据当前结果给不同的分数。假设我们有如下图的游戏,我是先手,我应该如何利用Minmax算法来选出第一步怎么走呢?

这个时候我们就要从结果看起,也就是第4步。图中标注第四步是我的对手下的,所以他要做的是最小化这个分数,于是对手根据结果可以反推出如下选择


这个时候我们就要从结果看起,也就是第4步。图中标注第四步是我的对手下的,所以他要做的是最小化这个分数,于是对手根据结果可以反推出如下选择
继续从后往前看到第3步,当我们知道了对手的选择以后,我们可以根据对手的结果反推出自己的选择,我们要做的是最大化这个分数,如图

继续从后往前看到第3步,当我们知道了对手的选择以后,我们可以根据对手的结果反推出自己的选择,我们要做的是最大化这个分数,如图

重复这个步骤,我们最终可以发现第一步的最优选择,如图


重复这个步骤,我们最终可以发现第一步的最优选择,如图以上就是极小极大算法(Minimax)。


以上就是极小极大算法(Minimax)。当然对于一个复杂的游戏来说,比如象棋,肯定是需要非常多步才能完成的。这就导致结果的数量是成几何增长的,也就是说,如果这个游戏每一步都有n个选择,那么在x步以后,将会有n^x个选择。这个时候,我们就需要采取剪枝算法(Alpha-Beta)来减少运算量。从剪枝算法这个名字我们就能看出,这个算法能让我们剪掉树状图中的一些分支,从而减少运算量。在这里也说一下剪枝算法,因为这并不是个不同于极小极大的算法,而是极小极大算法的升级版。我们将游戏简化成如下图,使用Minimax算法,我们可以得出这样的结果
但是,最后一步的分数其实也需要计算机来算(static evaluation),所以我们并不会一开始就有所有的数据,其实我们一开始是这样的

但是,最后一步的分数其实也需要计算机来算(static evaluation),所以我们并不会一开始就有所有的数据,其实我们一开始是这样的

然后,计算机给出了第一个分数

然后,计算机给出了第一个分数

当给出了这个分数的时候,我们站在步骤1看,无论另一分支的数字是多少,步骤1左边方框的数字不会超过2。因为第2步是我的对手下的,他希望分数尽可能的小,也就是这样的

当给出了这个分数的时候,我们站在步骤1看,无论另一分支的数字是多少,步骤1左边方框的数字不会超过2。因为第2步是我的对手下的,他希望分数尽可能的小,也就是这样的

这个时候,电脑再计算另一分支的分数,也就是7。知道另一分数是7以后,也就知道步骤1的左边方框分数为2。这时,我们往前看一步(步骤0)。步骤0的分数是大于等于2,因为我要最大化分数。如图

这个时候,电脑再计算另一分支的分数,也就是7。知道另一分数是7以后,也就知道步骤1的左边方框分数为2。这时,我们往前看一步(步骤0)。步骤0的分数是大于等于2,因为我要最大化分数。如图

现在,再来计算右边分支的分数,得到了1。同理,我们站在步骤1来看,右边方框中的数不会超过1,如图

现在,再来计算右边分支的分数,得到了1。同理,我们站在步骤1来看,右边方框中的数不会超过1,如图

在这个情况下,即使我不算最后一个数字,我也能知道在步骤0的结果为2,因为已知步骤1中的右边方框,数值不会超过1。所以我们就能直接知道结果,也就是

在这个情况下,即使我不算最后一个数字,我也能知道在步骤0的结果为2,因为已知步骤1中的右边方框,数值不会超过1。所以我们就能直接知道结果,也就是

我们可以看到,加上剪枝算法,我们不仅得到了相同的结果,而且减少了计算量。在实际应用中,加上剪枝算法,计算机大约需要算2*n(x/2)个结果,如果n为分支数,x为步数。相比于之前仅用极小极大算法的nx,效率提高了很多。这也就意味着,如果在象棋比赛中,假设使用极小极大的算法,计算机能往前评估7步,加上剪枝算法,计算机能往前评估14步。极小极大和剪枝算法曾在IBM开发的国际象棋超级电脑,深蓝(Deep Blue)中被应用,并且两次打败当时的世界国际象棋冠军。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 221,820评论 6 515
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,648评论 3 399
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 168,324评论 0 360
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,714评论 1 297
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,724评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,328评论 1 310
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,897评论 3 421
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,804评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,345评论 1 318
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,431评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,561评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,238评论 5 350
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,928评论 3 334
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,417评论 0 24
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,528评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,983评论 3 376
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,573评论 2 359

推荐阅读更多精彩内容

  • 本文系《文工团》约稿,禁止一切形式的未授权转载,谢谢合作。这篇是约稿的第二版,第一版可以点这里。 围棋,是一项中国...
    LostAbaddon阅读 2,590评论 7 10
  • 决策树理论在决策树理论中,有这样一句话,“用较少的东西,照样可以做很好的事情。越是小的决策树,越优于大的决策树”。...
    制杖灶灶阅读 5,866评论 0 25
  • 针对曾经火爆的2048游戏,有人实现了一个AI程序,可以以较大概率(高于90%)赢得游戏,并且作者在stackov...
    GarfieldEr007阅读 2,722评论 1 18
  • 这个题目取得比较奇怪,原因是:虽然号称数学是世界上最简洁的语言,但是太多的公式难免看的人心慌;其次公式在hexo+...
    Helen_Cat阅读 2,644评论 0 13
  • 一.朴素贝叶斯 1.分类理论 朴素贝叶斯是一种基于贝叶斯定理和特征条件独立性假设的多分类的机器学习方法,所...
    wlj1107阅读 3,093评论 0 5