动态分区到ORC表OOM问题

解决动态分区textfile文件到ORC文件OOM问题

1.问题描述

在搭建数据仓库的过程中,在搬历史数据的过程中,先将Orace中的数据sqoop到textFile格式的HIVE表中,然后运行"Insert...Select"语句向ORC格式的表中插入数据,报错Over usage of virtual memory。

2.异常分析

Parquet和ORC是列式批处理文件格式。这些格式要求在写入文件之前将批次的行(batches of rows)缓存在内存中。在执行INSERT语句时,动态分区目前的实现是:至少为每个动态分区目录打开一个文件写入器(file writer)。由于这些缓冲区是按分区维护的,因此在运行时所需的内存量随着分区数量的增加而增加。所以经常会导致mappers或reducers的OOM,具体取决于打开的文件写入器(file writer)的数量。通过INSERT语句插入数据到动态分区表中,也可能会超过HDFS同时打开文件数的限制。
如果没有join或聚合,INSERT ... SELECT语句会被转换为只有map任务的作业。mapper任务会读取输入记录然后将它们发送到目标分区目录。在这种情况下,每个mapper必须为遇到的每个动态分区创建一个新的文件写入器(file writer)。mapper在运行时所需的内存量随着它遇到的分区数量的增加而增加。

3.异常重现与解决

hive.exec.dynamic.partition
默认值:false
是否开启动态分区功能,默认false关闭。
使用动态分区的时候,该参数必须设置成true;
hive.exec.dynamic.partition.mode
默认值:strict
动态分区的模式,默认strict,表示必须指定至少一个分区为静态分区,nonstrict模式表示允许所有的分区字段都可以使用动态分区。
一般需要设置为nonstrict
hive.exec.max.dynamic.partitions.pernode
默认值:100
在每个执行MR的节点上,最大可以创建多少个动态分区。
该参数需要根据实际的数据来设定。一般选取比实际分区数大的值作为该参数的值。
hive.exec.max.dynamic.partitions
默认值:1000
在所有执行MR的节点上,最大一共可以创建多少个动态分区。
同上参数解释。

3.2关键参数

使用上述参数后就出现了Over usage of virtual memory的问题。
随后就看到了老哥的文章Hadoop实战
发现了hive.optimize.sort.dynamic.partition参数。
hive.optimize.sort.dynamic.partition
默认值:false

启用hive.optimize.sort.dynamic.partition,将其设置为true。通过这个优化,这个只有map任务的mapreduce会引入reduce过程,这样动态分区的那个字段比如日期在传到reducer时会被排序。由于分区字段是排序的,因此每个reducer只需要保持一个文件写入器(file writer)随时处于打开状态,在收到来自特定分区的所有行后,关闭记录写入器(record writer),从而减小内存压力。这种优化方式在写parquet文件时使用的内存要相对少一些,但代价是要对分区字段进行排序。

启用了该参数后,大部分表已经可以动态分区插入了。但还是有部分大表报Over usage of virtual memory,这时候就要调内存了。
mapreduce.map.memory.mb
mapreduce.reduce.memory.mb
map、reduce任务的物理内存分配值,常见设置为1GB,2GB,4GB等
CDH中默认为1GB,此处临时设置成2GB
mapreduce.map.java.opts
mapreduce.reduce.java.opts
map、reduce任务的Java堆栈大小设置,一般设置为小于等于上面那个值的75%,这样可以保证map、reduce任务有足够的堆栈外内存空间。此处均设置成-Xmx、-Xms为1500m

通过上述配置基本可以解决OOM的问题,如果还是不行,只能将查询分解为几个较小的查询,以减少每个查询创建的分区数量。这样可以让每个mapper打开较少的文件写入器(file writer),再不济就写个脚本一天一天插入(虽然有点low,但每天数据实在太大就让它晚上自己跑吧)

内容来源 微信公众号 Hadoop实操
其实大部分都是抄的老哥的,我只是想感受下Markdown,嘿嘿

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,406评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,732评论 3 393
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,711评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,380评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,432评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,301评论 1 301
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,145评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,008评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,443评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,649评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,795评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,501评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,119评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,731评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,865评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,899评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,724评论 2 354