学机器学习怎么可以不知道最小二乘法

起源

起源:最小二乘法源于天文学和大地测量学领域。因为这两个领域对精度的高要求而被发明。

1801年,意大利天文学家朱塞普·皮亚齐发现了第一颗小行星谷神星。进行了40天的跟踪观测后,但由于谷神星运行到太阳背后,失去了具体位置信息。随后全世界的科学家利用皮亚齐的观测数据开始寻找谷神星,但是根据大多数人计算的结果来寻找谷神星都没有结果。时年24岁的高斯也计算了谷神星的轨道。奥地利天文学家海因里希·奥伯斯根据高斯计算出来的轨道重新发现了谷神星。高斯使用的最小二乘法的方法发表于1809年他的著作《天体运动论》中,这个高斯正是著名数学家 卡尔·弗里德里希·高斯 ,没错就是我们大学数学认识的那个高斯。

image

机器学习本质其实就是求最优解的过程,最小二乘法是回归算法中求最优解的方法之一,还有一个是梯度下降法,以后会讲~。

思考

我们在正式讲最小二乘法之前,读者大大们可以想下下面这个问题临近中秋,小明想要自己做月饼,现在已知五种规格月饼所需的面粉重量如下:月饼重量(g)面粉重量(g)3020100818011019090220180现在小明想做规格为140g的月饼,请问他需要多少克月饼现在读者大大们根据平时经验,可以思考下怎么求。九年义务教育让我看见这种题目就条件反射列方程求未知数,不知道读者大大们是不是也是这样~

原理

我们从另一个角度来看这个问题我们将这5个月饼用坐标系标出来,如下图 然后我们先用画出一条接近这5个点的线,假设线性关系为

image
image

是不是只要我们找出一条最接近这5个点的线就可以了,这样算出来的值是最接近真实值的。

image

由图可以得出,需要这条线跟这个5个点的误差最小, 每个点跟线的误差如下所示

image

因为误差是长度,所以要算绝对值,计算起来不方便,用平方来替代

image

最后将所有误差值累加得出

image

最小二乘法呼之欲出,这就是最小二乘法的原理了,即让误差的平方总和尽可能小。从求一条最接近这五个点的线的问题转化成求最小化误差的问题。

image

求解

那么怎么求呢,继续以上面的为例子。这是一个二次函数。总误差的平方:

image

根据多元微积分,当

image

这个时候 ϵ 取得最小值,求的a,b的解为

image

a,b求出后,这条最接近的线也就出来了

image

进一步现在假设这条线是 二次函数,结果怎样

image

我们可以选择不同的 f(x),根据最小二乘法得出不一样的拟合函数。不过选择f(x)还是不能太随意,不然要么不准,要么容易过拟合。

代码实现

整个思路如下

image

目标函数:代入生成的x,生成对应的y

def real_func(x):
    return np.sin(2*np.pi*x)

随机生成10个x进行实验

x = np.linspace(0, 1, 10)

构造多项式拟合函数

#多项式
def fit_func(p,x):
    """
    eg:p = np.poly1d([2,3,5,7])   

   print(p)==>>2x3 + 3x2 + 5x + 7   
    """
    f = np.poly1d(p)
    return f(x)

计算误差

#残差
def residuals_func(p, x, y):
    ret = fit_func(p, x) - y
    return ret

leastsq 是 scipy 库 进行最小二乘法计算的函数,也就是通过误差函数以及数据点进行我们前面讲的对参数进行求导操作,最后得出我们拟合出来的函数。

def fitting(M=0):
    """
    n 为 多项式的次数
    """    
    # 随机初始化多项式参数
    #numpy.random.rand(d0)的随机样本位于[0, 1)之间。d0表示返回多少个
    p_init = np.random.rand(M+1) #生成M+1个随机数的列表
    # 最小二乘法
    p_lsq = leastsq(residuals_func, p_init, args=(x, y)) # 三个参数:误差函数、函数参数列表、数据点
    print('Fitting Parameters:', p_lsq[0])
    
    # 可视化
    plt.plot(x_points, real_func(x_points), label='real')
    plt.plot(x_points, fit_func(p_lsq[0], x_points), label='fitted curve')
    plt.plot(x, y, 'bo', label='noise')
    plt.legend()
    return p_lsq
    
    # M=0
    p_lsq = fitting(M=0)
image

我们从一次函数依次增加项式,找到最合适的拟合曲线。

image

到9次的时候,已经完全拟合这些点了 。

image

总结

我们可以看出,最小二乘法的原理其实非常简单,运用起来也简洁,应用广泛。但是它也有一定的局限性,比如如果拟合函数不是线性的,就无法用最小二乘法了。还有一点,本文讲的最小二乘法是最简洁的,但是它对噪声的容忍度很低,容易造成过拟合,所以还需要加上正则化,这个有兴趣的读者可以了解下。最小二乘法运用误差角度求最优解的思路是我们机器学习中一个很经典也很常用的思维方向之一,为学习机器学习打下一个好基础。这也是把它放在我们的机器学习系列最开始的原因。

ps:需要完整代码,关注公众号,回复‘最小二乘法’获得~

本文首发微信公众号“哈尔的数据城堡”.

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,948评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,371评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,490评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,521评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,627评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,842评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,997评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,741评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,203评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,534评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,673评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,339评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,955评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,770评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,000评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,394评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,562评论 2 349

推荐阅读更多精彩内容