等差数列——网易

  • 如果一个数列S满足对于所有的合法的i,都有S[i + 1] = S[i] + d, 这里的d也可以是负数和零,我们就称数列S为等差数列。

小易现在有一个长度为n的数列x,小易想把x变为一个等差数列。小易允许在数列上做交换任意两个位置的数值的操作,并且交换操作允许交换多次。但是有些数列通过交换还是不能变成等差数列,小易需要判别一个数列是否能通过交换操作变成等差数列

题目大意:

  • 判断一个数列是否是等差数列,因此该题的优化主要集中在Top 2问题上面。

    • parition算法:O(n)
    • 优先队列:O(nlog2)
    • 排序:O(nlogn)
  • 该题还有一种有bug的做法,采用等差数列求和公式,时间复杂度虽然同样达到O(n),但是明显更快,因为是真正的O(n),只需扫描一遍。

bug主要是,sum虽然可以和等差数列的和一样,但是不能证明该数列是等差数列。
虽然该解法可以通过OJ,显然是OJ测试用例不足。

Code

public class DisArr {
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        int n = scanner.nextInt();
        int a[] = new int[n];
        for (int i = 0; i < n; ++i)
        {
            a[i] = scanner.nextInt();
        }
        scanner.close();

        Arrays.sort(a);
        int dis = a[1] - a[0];
        for (int i = 1; i < a.length; ++i)
        {
            if (a[i] - a[i - 1] != dis)
            {
                System.out.println("Impossible");
                return;
            }
        }
        System.out.println("possible");
    }
}

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,053评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,527评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,779评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,685评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,699评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,609评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,989评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,654评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,890评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,634评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,716评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,394评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,976评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,950评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,191评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,849评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,458评论 2 342

推荐阅读更多精彩内容

  • 一年级语文上册生字表 生字表一(共400字) 啊(ā)爱(ài)安(ān)岸(àn)爸(bà)八(bā)巴(bā)...
    meychang阅读 2,755评论 0 6
  • 【1】7,9,-1,5,( ) A、4;B、2;C、-1;D、-3 分析:选D,7+9=16;9+(-1)=8;(...
    Alex_bingo阅读 18,797评论 1 19
  • sì 支zhī茶chá 对duì 酒jiǔ,赋fù 对duì 诗shī,燕yàn子zi 对duì 莺yīng 儿é...
    每个人的孟母堂阅读 1,192评论 0 6
  • 作者/夜含 唱着一曲百转千回的歌 穿过悲伤逆流的河 当大海把星光摇曳 晨光在寻着轻浅的车辙 那是谁的泪光笑靥 有水...
    夜含阅读 355评论 3 7
  • 1.目标达成术活动期间自己的学习收获是什么,请至少书写3条; 一通过此次活动学习收获了知道如何使用甘特图来制定计划...
    紫郁蓝净阅读 240评论 0 0