文本表征:SoW、BoW、TF-IDF、Hash Trick、doc2vec、DBoW、DM

一、文本特征

(一)基本文本特征提取

  • 词语数量
    常,负面情绪评论含有的词语数量比正面情绪评论更多。
  • 字符数量
    常,负面情绪评论含有的字符数量比正面情绪评论更多。
  • 平均词汇长度
    平均词汇长度=所有单词长度/单词个数。
  • 停用词数量
    有时,计算停用词的数量可以提供去除停用词后失去的额外信息。
  • 特殊字符数量
    如"#"、"@"等的数量。
  • 数字的数量
    并不常用,但在相似任务中常比较有用。
  • 大写单词的数量
    ......

(二)文本的预处理

小写转换、去除标点符号、停用词去除、常见词去除、稀缺词去除、拼写校对、分词、词干提取、词性还原 ......
词形还原(lemmatization),是把一个任何形式的语言词汇还原为一般形式;而词干提取(stemming)是抽取词的词干或者词根形式,不一定能够表达完整语义。

(三)高级文本处理

  • N-grams
    若太短,则无法捕获重要信息;若太长,则捕获的信息基本是一样的,没有差异性。
  • 词频TF
  • 反转文档频率IDF
  • 词频-反转文档频率TF-IDF
  • 词集模型SoW、词袋模型BoW
  • 评测情感
    例如使用NLTK自带方法。
  • 词向量
  • 文本向量
    ......

二、SoW & BoW

当将文本表示为词相关的向量时,向量的维度值为总词汇数。
词集模型(Set of Words, SoW)中,如果向量维度位置对应的词出现在文本中,则该处值为1,否则为0。
除了考虑词是否出现外,词袋模型(Bag of Words, BoW)还考虑其出现次数,即每个文本向量在其对应词处取值为该词在文本中出现次数,未出现则为0。
但是,用词频来衡量该词的重要性是存在问题的。比如"the",它的词频很高,但其实它没有那么重要。所以可以使用TF-IDF特征来统计修正词频。
修正后的向量依旧存在数据稀疏的问题,大部分值为0,常使用Hash Trick进行降维。

(一) TF-IDF

TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度。
字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。
TF(term frequency):词在当前文本中的词频;
IDF(inverse document frequency):包含该词的文本在语料库中出现频率的倒数的对数,即:
IDF(x)=log{N \over N(x)}
其中,N是语料库中文本的总数,N(x)是语料库中包含词x的文本的总数。
常见的IDF平滑公式之一:
IDF(x)=log{N+1 \over N(x)+1}+1
最终,词x的TF-IDF值:
TF{-}IDF(x)=TF(x)*IDF(x)

(二)Hash Trick

哈希函数h将第i个特征哈希到位置j,即h(i)=j。那么,第i个原始特征的词频数值c(i)将会累积到哈希后的第j个特征的词频数值c'(j)上,即:c'(j)=\sum_{i\in J;h(i)=j}c(i)
其中J是原始特征的维度。
但这样做存在一个问题,有可能两个原始特征哈希后位置相同,导致词频累加后特征值突然变大。
为了解决这个问题,出现了hash trick的变种signed hash trick,多了一个哈希函数{\xi}:N{\rightarrow}{\pm}1,此时,我们有:
c'(j)=\sum_{i\in J;h(i)=j}{\xi}(i)c(i)
这样做的好处是,哈希后的特征值仍然是一个无偏的估计,不会导致某些哈希位置的值过大。从实际应用中来说,由于文本特征的高稀疏性,这么做是可行的。
注意hash trick降维后的特征已经不知道其代表的特征和意义,所以其解释性不强。
一般来说,只要词汇表的特征不至于太大,大到内存不够用,肯定是使用一般意义的向量化比较好。因为向量化的方法解释性很强,我们知道每一维特征对应哪一个词,进而我们还可以使用TF-IDF对各个词特征的权重进行修改,进一步完善特征的表示。
而Hash Trick一般使用在大规模机器学习上。此时我们的词汇量极大,使用向量化方法内存可能不够用,而使用Hash Trick降维速度很快,降维后的特征仍然可以帮我们完成后续的分类和聚类工作。当然由于分布式计算框架的存在,其实一般我们不会出现内存不够的情况。因此,实际工作中常常使用的都是特征向量化。

三、doc2vec

(一)DBoW

Distributed Bag of Words(DBoW)在给定文档向量的情况下预测文档中一组随机单词的概率。和Skip-Gram很像。
DBoW模型的输入是文档向量,预测的是该文档中随机抽样的单词。在SGD的每一次迭代中采样一个文本窗口,再从该文本窗口中随机采样一个词,从而形成一个给定段落向量进行词预测的多分类的任务。

(二)DM

Distributed Memory(DM)在给定文档向量和上下文的情况下预测单词的概率。和CBoW很像。
DM模型在训练时,首先将每个文档id和语料库中的所有词初始化为一个k维的向量,然后将文档向量和上下文的向量输入模型,隐藏层将这些向量进行累加或取均值或拼接得到中间向量,作为输出层softmax的输入。

(三)小结

不同的文档具有不同的文档向量,但是不同文档中的相同词具有相同的词向量。在一个文档的训练过程中,文档id保持不变,共享着同一个文档向量,相当于在预测单词的概率时,都利用了整个文档的语义。
其主要优点是文档向量的获取过程中,可以对没有标记的数据集进行训练。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,794评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,050评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,587评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,861评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,901评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,898评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,832评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,617评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,077评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,349评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,483评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,199评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,824评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,442评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,632评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,474评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,393评论 2 352

推荐阅读更多精彩内容