In [11]: def time_matmul(x):
...: %timeit tf.matmul(x, x)
...:
In [12]: with tf.device("CPU:0"):
...: x = tf.random_uniform([1000, 1000])
...: assert x.device.endswith("CPU:0")
...: time_matmul(x)
...:
The slowest run took 4.25 times longer than the fastest. This could mean that an intermediate result is being cached.
100 loops, best of 3: 8.05 ms per loop
In [13]: with tf.device("GPU:0"):
...: x = tf.random_uniform([1000,1000])
...: assert x.device.endswith("GPU:0")
...: time_matmul(x)
...:
The slowest run took 448.91 times longer than the fastest. This could mean that an intermediate result is being cached.
10000 loops, best of 3: 222 µs per loop
比对 CPU 和 GPU 矩阵乘法速度
©著作权归作者所有,转载或内容合作请联系作者
- 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
- 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
- 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
推荐阅读更多精彩内容
- 姓名:丁英琦 学号:17101223408 转载自:http://mp.weixin.qq.com/s/ebxfK...