python单细胞数据的基因集打分

1.R包和数据准备

#pip install gseapy  -i https://pypi.tuna.tsinghua.edu.cn/simple

from gseapy import Msigdb
import pandas as pd
import numpy as np
import scanpy as sc
import matplotlib.pyplot as plt
import anndata as ad

随便一个h5文件即可。我这里使用的是pbmc3k,scanpy推文最后生成的文件就是它。

adata = ad.read_h5ad('../1.pbmc3k/write/pbmc3k.h5ad')
adata
AnnData object with n_obs × n_vars = 2638 × 13714
    obs: 'n_genes', 'n_genes_by_counts', 'total_counts', 'total_counts_mt', 'pct_counts_mt', 'leiden'
    var: 'gene_ids', 'n_cells', 'mt', 'n_cells_by_counts', 'mean_counts', 'pct_dropout_by_counts', 'total_counts', 'highly_variable', 'means', 'dispersions', 'dispersions_norm', 'mean', 'std'
    uns: 'dendrogram_leiden', 'hvg', 'leiden', 'leiden_colors', 'log1p', 'neighbors', 'pca', 'rank_genes_groups', 'umap'
    obsm: 'X_pca', 'X_umap'
    varm: 'PCs'
    obsp: 'connectivities', 'distances'
sc.pl.umap(adata,color='leiden',size=4,legend_loc="on data")

2.获取用于评分的基因集合

基本上大家使用的各种评分的基因集,都多数来自于gsea网站,gseapy包可以帮我们下载和读取网站上的数据,如果网络不佳可能会报错。
以下代码参考自:https://gseapy.readthedocs.io/en/latest/gseapy_example.html

首先是指定自己所需要的数据是哪个版本,dbver参数是https://data.broadinstitute.org/gsea-msigdb/msigdb/release/这个网页上面的文件夹名字。而category则是该文件夹下的基因集合名字,比如人类就是h和c1~c8,都小写。

msig=Msigdb()
gmt = msig.get_gmt(category='h.all', dbver="2024.1.Hs")

列出都有哪些版本文件夹

msig.list_dbver()

列出该文件夹下都有哪些基因集合

msig.list_category(dbver="2024.1.Hs") 
['c1.all',
 'c2.all',
 'c2.cgp',
 'c2.cp.biocarta',
 'c2.cp.kegg_legacy',
 'c2.cp.kegg_medicus',
 'c2.cp.pid',
 'c2.cp.reactome',
 'c2.cp',
 'c2.cp.wikipathways',
 'c3.all',
 'c3.mir.mir_legacy',
 'c3.mir.mirdb',
 'c3.mir',
 'c3.tft.gtrd',
 'c3.tft.tft_legacy',
 'c3.tft',
 'c4.3ca',
 'c4.all',
 'c4.cgn',
 'c4.cm',
 'c5.all',
 'c5.go.bp',
 'c5.go.cc',
 'c5.go.mf',
 'c5.go',
 'c5.hpo',
 'c6.all',
 'c7.all',
 'c7.immunesigdb',
 'c7.vax',
 'c8.all',
 'h.all',
 'msigdb']

列出可以选择的具体基因集

list(gmt.keys())[0:10] #只列了前10
['HALLMARK_ADIPOGENESIS',
 'HALLMARK_ALLOGRAFT_REJECTION',
 'HALLMARK_ANDROGEN_RESPONSE',
 'HALLMARK_ANGIOGENESIS',
 'HALLMARK_APICAL_JUNCTION',
 'HALLMARK_APICAL_SURFACE',
 'HALLMARK_APOPTOSIS',
 'HALLMARK_BILE_ACID_METABOLISM',
 'HALLMARK_CHOLESTEROL_HOMEOSTASIS',
 'HALLMARK_COAGULATION']
gene_set=gmt['HALLMARK_ADIPOGENESIS']
print(gene_set) #列出基因集里的基因
['ABCA1', 'ABCB8', 'ACAA2', 'ACADL', 'ACADM', 'ACADS', 'ACLY', 'ACO2', 'ACOX1', 'ADCY6', 'ADIG', 'ADIPOQ', 'ADIPOR2', 'AGPAT3', 'AIFM1', 'AK2', 'ALDH2', 'ALDOA', 'ANGPT1', 'ANGPTL4', 'APLP2', 'APOE', 'ARAF', 'ARL4A', 'ATL2', 'ATP1B3', 'ATP5PO', 'BAZ2A', 'BCKDHA', 'BCL2L13', 'BCL6', 'C3', 'CAT', 'CAVIN1', 'CAVIN2', 'CCNG2', 'CD151', 'CD302', 'CD36', 'CDKN2C', 'CHCHD10', 'CHUK', 'CIDEA', 'CMBL', 'CMPK1', 'COL15A1', 'COL4A1', 'COQ3', 'COQ5', 'COQ9', 'COX6A1', 'COX7B', 'COX8A', 'CPT2', 'CRAT', 'CS', 'CYC1', 'CYP4B1', 'DBT', 'DDT', 'DECR1', 'DGAT1', 'DHCR7', 'DHRS7', 'DHRS7B', 'DLAT', 'DLD', 'DNAJB9', 'DNAJC15', 'DRAM2', 'ECH1', 'ECHS1', 'ELMOD3', 'ELOVL6', 'ENPP2', 'EPHX2', 'ESRRA', 'ESYT1', 'ETFB', 'FABP4', 'FAH', 'FZD4', 'G3BP2', 'GADD45A', 'GBE1', 'GHITM', 'GPAM', 'GPAT4', 'GPD2', 'GPHN', 'GPX3', 'GPX4', 'GRPEL1', 'HADH', 'HIBCH', 'HSPB8', 'IDH1', 'IDH3A', 'IDH3G', 'IFNGR1', 'IMMT', 'ITGA7', 'ITIH5', 'ITSN1', 'JAGN1', 'LAMA4', 'LEP', 'LIFR', 'LIPE', 'LPCAT3', 'LPL', 'LTC4S', 'MAP4K3', 'MCCC1', 'MDH2', 'ME1', 'MGLL', 'MGST3', 'MIGA2', 'MRAP', 'MRPL15', 'MTARC2', 'MTCH2', 'MYLK', 'NABP1', 'NDUFA5', 'NDUFAB1', 'NDUFB7', 'NDUFS3', 'NKIRAS1', 'NMT1', 'OMD', 'ORM1', 'PDCD4', 'PEMT', 'PEX14', 'PFKFB3', 'PFKL', 'PGM1', 'PHLDB1', 'PHYH', 'PIM3', 'PLIN2', 'POR', 'PPARG', 'PPM1B', 'PPP1R15B', 'PRDX3', 'PREB', 'PTCD3', 'PTGER3', 'QDPR', 'RAB34', 'REEP5', 'REEP6', 'RETN', 'RETSAT', 'RIOK3', 'RMDN3', 'RNF11', 'RREB1', 'RTN3', 'SAMM50', 'SCARB1', 'SCP2', 'SDHB', 'SDHC', 'SLC19A1', 'SLC1A5', 'SLC25A1', 'SLC25A10', 'SLC27A1', 'SLC5A6', 'SLC66A3', 'SNCG', 'SOD1', 'SORBS1', 'SOWAHC', 'SPARCL1', 'SQOR', 'SSPN', 'STAT5A', 'STOM', 'SUCLG1', 'SULT1A1', 'TALDO1', 'TANK', 'TKT', 'TOB1', 'TST', 'UBC', 'UBQLN1', 'UCK1', 'UCP2', 'UQCR10', 'UQCR11', 'UQCRC1', 'UQCRQ', 'VEGFB', 'YWHAG']

由上可见,其实我们只是获取到了一组基因的列表。如果你已经从别处下载或得到了基因列表,也是可以和上面的gene_set一样使用。

例如我的test.txt里放了一列基因。那么我们就可以读取并转换为python列表:

gene_set2 = pd.read_table('test.txt',header=None)[0].tolist()
print(gene_set2)
['CD3D', 'CD3E', 'CD3G', 'CD247', 'CD4', 'CD8A', 'CD8B', 'CD8B2', 'PTPRC', 'LCK', 'FYN', 'ZAP70', 'LCP2', 'LAT', 'ITK', 'TEC', 'NCK1', 'NCK2', 'VAV3', 'VAV1', 'VAV2', 'GRAP2', 'GRB2', 'PAK1', 'PAK2', 'PAK3', 'PAK4', 'PAK5', 'PAK6', 'BUB1B-PAK6', 'RHOA', 'CDC42', 'DLG1', 'MAPK11', 'MAPK12', 'MAPK13', 'MAPK14', 'PLCG1', 'PPP3CA', 'PPP3CB', 'PPP3CC', 'PPP3R1', 'PPP3R2', 'NFATC1', 'NFATC2', 'NFATC3', 'SOS1', 'SOS2', 'RASGRP1', 'HRAS', 'KRAS', 'NRAS', 'RAF1', 'MAP2K1', 'MAP2K2', 'MAPK1', 'MAPK3', 'FOS', 'JUN', 'PRKCQ', 'CARD11', 'BCL10', 'MALT1', 'MAP3K7', 'MAP2K7', 'MAPK8', 'MAPK10', 'MAPK9', 'CHUK', 'IKBKB', 'IKBKG', 'NFKB1', 'RELA', 'NFKBIA', 'NFKBIB', 'NFKBIE', 'CD28', 'ICOS', 'CD40LG', 'PIK3R1', 'PIK3R2', 'PIK3R3', 'P3R3URF-PIK3R3', 'PIK3CA', 'PIK3CD', 'PIK3CB', 'PDPK1', 'AKT1', 'AKT2', 'AKT3', 'MAP3K8', 'MAP3K14', 'GSK3B', 'PDCD1', 'CTLA4', 'PTPN6', 'PTPN11', 'PPP2CA', 'PPP2CB', 'PPP2R1B', 'PPP2R1A', 'PPP2R2A', 'PPP2R2B', 'PPP2R2C', 'PPP2R2D', 'PPP2R3B', 'PPP2R3C', 'PPP2R3A', 'PPP2R5B', 'PPP2R5C', 'PPP2R5D', 'PPP2R5E', 'PPP2R5A', 'CBLB', 'IL2', 'IL4', 'IL5', 'IL10', 'IFNG', 'CSF2', 'TNF', 'CDK4']

3.打分并画图

敲简单了。

sc.tl.score_genes(adata,gene_set)
sc.pl.umap(adata,color='score')
WARNING: genes are not in var_names and ignored: Index(['ACADL', 'ADCY6', 'ADIG', 'ADIPOQ', 'ANGPT1', 'ANGPTL4', 'APOE',
       'ATP5PO', 'CAVIN1', 'CAVIN2', 'CIDEA', 'CMBL', 'COL15A1', 'COL4A1',
       'CYP4B1', 'ENPP2', 'FABP4', 'FZD4', 'GPAT4', 'HSPB8', 'ITGA7', 'ITIH5',
       'LAMA4', 'LEP', 'LIFR', 'LPL', 'MIGA2', 'MRAP', 'MTARC2', 'OMD', 'ORM1',
       'PPARG', 'PTGER3', 'SLC25A10', 'SLC66A3', 'SNCG', 'SOWAHC', 'SPARCL1',
       'SQOR', 'UQCR11'],
      dtype='object')

warning是说列表里面有些基因不在我们的表达矩阵里,很正常,无需理会。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,001评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,210评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,874评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,001评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,022评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,005评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,929评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,742评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,193评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,427评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,583评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,305评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,911评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,564评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,731评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,581评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,478评论 2 352

推荐阅读更多精彩内容