算法|二叉树的最大最小深度、完全二叉树个数

一、 104. 二叉树的最大深度

题目链接:https://leetcode.cn/problems/maximum-depth-of-binary-tree/
思路一:使用后序遍历,依次求出节点的高度,根节点的最大高度就是二叉树的最大深度

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public int maxDepth(TreeNode root) {
        if (root == null) return 0;
        int leftDepth = maxDepth(root.left);
        int rightDepth = maxDepth(root.right);
        return Math.max(leftDepth, rightDepth) + 1;
    }
}

思路二、使用前序遍历,求深度

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    int result = 0;
    private void maxDepth(TreeNode root, int depth) {
        result = depth > result ? depth : result;
        if (root.left == null && root.right == null) return;
        if (root.left != null) {
            depth++;
            maxDepth(root.left, depth);
            depth--;
        }
        if (root.right != null) {
            depth++;
            maxDepth(root.right, depth);
            depth--;
        }
    }
    public int maxDepth(TreeNode root) {
        if (root == null) return 0;
        maxDepth(root, 1);
        return result;
    }
}

思路三、使用层序遍历,求有总共多少层

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public int maxDepth(TreeNode root) {
        if (root == null) return 0;
        int depth = 0;
        Queue<TreeNode> queue = new LinkedList<>();
        queue.offer(root);
        while (!queue.isEmpty()) {
            int size = queue.size();
            depth++;
            while (size-- > 0) {
                TreeNode treeNode = queue.poll();
                if (treeNode.left != null) queue.offer(treeNode.left);
                if (treeNode.right != null) queue.offer(treeNode.right); 
            }
        }
        return depth;
    }
}

二、559. N 叉树的最大深度

题目链接:https://leetcode.cn/problems/maximum-depth-of-n-ary-tree/
思路一、使用后序遍历,求每个节点的最大高度

/*
// Definition for a Node.
class Node {
    public int val;
    public List<Node> children;

    public Node() {}

    public Node(int _val) {
        val = _val;
    }

    public Node(int _val, List<Node> _children) {
        val = _val;
        children = _children;
    }
};
*/

class Solution {
    public int maxDepth(Node root) {
        if (root == null) return 0;
        int maxDepth = 0;
        for (int i = 0; root.children != null && i < root.children.size(); i++) {
            maxDepth = Math.max(maxDepth, maxDepth(root.children.get(i)));
        }
        return maxDepth + 1;
    }
}

思路二:前序遍历

/*
// Definition for a Node.
class Node {
    public int val;
    public List<Node> children;

    public Node() {}

    public Node(int _val) {
        val = _val;
    }

    public Node(int _val, List<Node> _children) {
        val = _val;
        children = _children;
    }
};
*/

class Solution {
    private int result = 0;
    private void maxDepth(Node root, int depth) {
        result = depth > result ? depth : result;
        if (root.children == null || root.children.isEmpty()) return;
        for (int i = 0; i < root.children.size(); i++) {
            Node childNode = root.children.get(i);
            if (childNode != null) {
                depth++;
                maxDepth(childNode, depth);
                depth--;
            }
            
        }
    }
    public int maxDepth(Node root) {
        if (root == null) return result;
        maxDepth(root, 1);
        return result;
    }
}

思路三、层序遍历

/*
// Definition for a Node.
class Node {
    public int val;
    public List<Node> children;

    public Node() {}

    public Node(int _val) {
        val = _val;
    }

    public Node(int _val, List<Node> _children) {
        val = _val;
        children = _children;
    }
};
*/

class Solution {
    public int maxDepth(Node root) {
        if (root == null) return 0;
        int depth = 0;
        Queue<Node> queue = new LinkedList<>();
        queue.offer(root);
        while (!queue.isEmpty()) {
            int size = queue.size();
            depth++;
            while (size-- > 0) {
                Node node = queue.poll();
                for (int i = 0; node.children != null && i < node.children.size(); i++) {
                    queue.offer(node.children.get(i));
                }
            }
        }
        return depth;
    }
}

三、 111. 二叉树的最小深度

题目链接:https://leetcode.cn/problems/minimum-depth-of-binary-tree/
思路一:后序遍历

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public int minDepth(TreeNode root) {
        if (root == null) return 0;
        int leftDepth = minDepth(root.left);
        int rightDepth = minDepth(root.right);
        if (root.left != null && root.right == null) {
            return 1 + leftDepth;
        }
        if (root.left == null && root.right != null) {
            return 1 + rightDepth;
        }
        return Math.min(leftDepth, rightDepth) + 1;
    }
}

思路二:前序遍历

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    int result = Integer.MAX_VALUE;
    private void minDepth(TreeNode root, int depth) {
        if (root.left == null && root.right == null) {
            result = result > depth ? depth : result;
            return;
        }
        if (root.left != null) {
            minDepth(root.left, depth + 1);
        }
        if (root.right != null) {
            minDepth(root.right, depth + 1);
        }
    }
    public int minDepth(TreeNode root) {
        if (root == null) return 0;
        minDepth(root, 1);
        return result;
    }
}

思路三:层序遍历

/**r
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public int minDepth(TreeNode root) {
        if (root == null) return 0;
        int depth = 0;
        Queue<TreeNode> queue = new LinkedList<>();
        queue.offer(root);
        while (!queue.isEmpty()) {
            int size = queue.size();
            depth++;
            while (size-- > 0) {
                TreeNode treeNode = queue.poll();
                if (treeNode.left == null && treeNode.right == null) return depth;
                if (treeNode.left != null) queue.offer(treeNode.left);
                if (treeNode.right != null) queue.offer(treeNode.right);
            }
        }
        return depth;
    }
}

四、 222. 完全二叉树的节点个数

题目链接:https://leetcode.cn/problems/count-complete-tree-nodes/
思路一、当作一个普通的二叉树可使用后序、层序等

//后序迭代法
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public int countNodes(TreeNode root) {
        if (root == null) return 0;
        int leftCount = countNodes(root.left);
        int rigthCount = countNodes(root.right);
        return leftCount + rigthCount + 1;
    }
}
//层序遍历
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public int countNodes(TreeNode root) {
        if (root == null) return 0;
        int result = 0;
        Queue<TreeNode> queue = new LinkedList<>();
        queue.offer(root);
        while (!queue.isEmpty()) {
            int size = queue.size();
            while (size-- > 0) {
                result++;
                TreeNode treeNode = queue.poll();
                if (treeNode.left != null) queue.offer(treeNode.left);
                if (treeNode.right != null) queue.offer(treeNode.right);
            }
        }
        return result;
    }
}

思路二、使用后序遍历,并利用完全二叉树特性

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public int countNodes(TreeNode root) {
        if (root == null) return 0;
        TreeNode leftNode = root.left;
        TreeNode rightNode = root.right;
        int leftCount = 0;
        int rightCount = 0;
        while (leftNode != null) {
            leftNode = leftNode.left;
            leftCount++;
        }
        while (rightNode != null) {
            rightNode = rightNode.right;
            rightCount++;
        }
        if (leftCount == rightCount) {
            return (2 << leftCount) - 1;
        } 
        leftCount = countNodes(root.left);
        rightCount = countNodes(root.right);
        return leftCount + rightCount + 1;
    }
}
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

友情链接更多精彩内容