Flume + Kafka + Spark Streaming整合

参考:
http://archive.cloudera.com/cdh5/cdh/5/flume-ng-1.6.0-cdh5.5.0/FlumeUserGuide.html

  • Logger-->Flume

1/配置Flume配置文件streaming.conf

agent1.sources=avro-source
agent1.channels=logger-channel
agent1.sinks=log-sink

#define source
agent1.sources.avro-source.type=avro
agent1.sources.avro-source.bind=0.0.0.0
agent1.sources.avro-source.port=41414

#define channel
agent1.channels.logger-channel.type=memory

#define sink
agent1.sinks.log-sink.type=logger

agent1.sources.avro-source.channels=logger-channel
agent1.sinks.log-sink.channel=logger-channel

2/Java程序的日志配置文件

log4j.rootLogger=INFO,stdout,flume

log4j.appender.stdout = org.apache.log4j.ConsoleAppender
log4j.appender.stdout.target = System.out
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss,SSS} [%t] [%c] [%p] - %m%n

log4j.appender.flume = org.apache.flume.clients.log4jappender.Log4jAppender
log4j.appender.flume.Hostname = hadoop
log4j.appender.flume.Port = 41414
log4j.appender.flume.UnsafeMode = true

3/启动flume-ng

flume-ng agent \
--conf $FLUME_HOME/conf \
--conf-file $FLUME_HOME/conf/streaming.conf \
--name agent1 \
-Dflume.root.logger=INFO,console

4/在flume-ng窗口可以即时看到日志的产生

  • Logger-->Flume-->Kafka

1/启动kafka,并创建topic
./kafka-topics.sh --create --zookeeper hadoop:2181 --replication-factor 1 --partitions 1 --topic flume-kafka-streaming-topic

2/配置Flume配置文件streaming2.conf

agent1.sources=avro-source
agent1.channels=logger-channel
agent1.sinks=kafka-sink

#define source
agent1.sources.avro-source.type=avro
agent1.sources.avro-source.bind=0.0.0.0
agent1.sources.avro-source.port=41414

#define channel
agent1.channels.logger-channel.type=memory

#define sink
agent1.sinks.kafka-sink.type=org.apache.flume.sink.kafka.KafkaSink
agent1.sinks.kafka-sink.topic = flume-kafka-streaming-topic
agent1.sinks.kafka-sink.brokerList = hadoop:9092
agent1.sinks.kafka-sink.requiredAcks = 1
agent1.sinks.kafka-sink.batchSize = 20

agent1.sources.avro-source.channels=logger-channel
agent1.sinks.kafka-sink.channel=logger-channel

3/启动日志生产程序,产生的日志即时的在kafka-console-consumer窗口产生
kafka-console-consumer.sh --zookeeper hadoop:2181 --topic flume-kafka-streaming-topic

  • Logger-->Flume-->Kafka-->Spark Streaming

1/Java代码:

object FlumeKafkaReceiverWordCount {
  def main(args: Array[String]): Unit = {
    if(args.length < 4) {
      //Edit Configuration : hadoop:2181 test flume-kafka-streaming-topic 1
      System.err.println("Usage: FlumeKafkaReceiverWordCount <zkQuorum> <group> <topics> <numThreads>")
      System.exit(1)
    }

    val Array(zkQuorum, group, topics, numThreads) = args
    
    val sparkConf = new SparkConf().setAppName("FlumeKafkaReceiverWordCount").setMaster("local[2]")
    //val sparkConf = new SparkConf()

    val ssc = new StreamingContext(sparkConf, Seconds(5))

    val topicMap = topics.split(",").map((_,numThreads.toInt)).toMap

    val messages = KafkaUtils.createStream(ssc, zkQuorum, group, topicMap)

    messages.map(_._2).flatMap(_.split(" ")).map((_, 1)).reduceByKey(_ + _).print()

    ssc.start()
    ssc.awaitTermination()
  }
}

2/启动上面的程序,即可在Console窗口实时看到单词基数
3/注意:
在本地进行测试,
在IDEA中运行LoggerGenerator
然后使用Flume、Kafka以及Spark Streaming进行处理操作。

在生产环境上,
1.打包jar,执行LoggerGenerator类
2.Flume、Kafka和本地测试步骤是一样的
3.Spark Streaming的代码也是需要打成jar包,然后使用spark-submit的方式进行提交到环境上执行
4.可以根据实际情况选择运行模式:local/yarn/standalone/mesos
5.在生产上,整个流处理的流程都一样的,区别在于业务逻辑的复杂性

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,172评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,346评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,788评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,299评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,409评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,467评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,476评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,262评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,699评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,994评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,167评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,827评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,499评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,149评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,387评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,028评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,055评论 2 352

推荐阅读更多精彩内容