HTTP,HTTP2.0,SPDY,HTTPS你应该知道的一些事

作为一个经常和web打交道的程序员,了解这些协议是必须的,本文就向大家介绍一下这些协议的区别和基本概念,文中可能不局限于前端知识,还包括一些运维,协议方面的知识,希望能给读者带来一些收获,如有不对之处还请指出。

1.web始祖HTTP

全称:超文本传输协议(HyperText Transfer Protocol) ,伴随着计算机网络和浏览器的诞生,HTTP1.0也随之而来,处于计算机网络中的应用层,HTTP是建立在TCP协议之上,所以HTTP协议的瓶颈及其优化技巧都是基于TCP协议本身的特性,例如tcp建立连接的3次握手和断开连接的4次挥手以及每次建立连接带来的RTT延迟时间。

2.HTTP与现代化浏览器

早在HTTP建立之初,主要就是为了将超文本标记语言(HTML)文档从Web服务器传送到客户端的浏览器。也是说对于前端来说,我们所写的HTML页面将要放在我们的web服务器上,用户端通过浏览器访问url地址来获取网页的显示内容,但是到了WEB2.0以来,我们的页面变得复杂,不仅仅单纯的是一些简单的文字和图片,同时我们的HTML页面有了CSS,Javascript,来丰富我们的页面展示,当ajax的出现,我们又多了一种向服务器端获取数据的方法,这些其实都是基于HTTP协议的。同样到了移动互联网时代,我们页面可以跑在手机端浏览器里面,但是和PC相比,手机端的网络情况更加复杂,这使得我们开始了不得不对HTTP进行深入理解并不断优化过程中。

3.HTTP的基本优化

影响一个HTTP网络请求的因素主要有两个:带宽和延迟。

  • 带宽:如果说我们还停留在拨号上网的阶段,带宽可能会成为一个比较严重影响请求的问题,但是现在网络基础建设已经使得带宽得到极大的提升,我们不再会担心由带宽而影响网速,那么就只剩下延迟了。
  • 延迟

1.浏览器阻塞(HOL blocking):浏览器会因为一些原因阻塞请求。浏览器对于同一个域名,同时只能有 4 个连接(这个根据浏览器内核不同可能会有所差异),超过浏览器最大连接数限制,后续请求就会被阻塞。

2.DNS 查询(DNS Lookup):浏览器需要知道目标服务器的 IP 才能建立连接。将域名解析为 IP 的这个系统就是 DNS。这个通常可以利用DNS缓存结果来达到减少这个时间的目的。

3.建立连接(Initial connection):HTTP 是基于 TCP 协议的,浏览器最快也要在第三次握手时才能捎带 HTTP 请求报文,达到真正的建立连接,但是这些连接无法复用会导致每次请求都经历三次握手和慢启动。三次握手在高延迟的场景下影响较明显,慢启动则对文件类大请求影响较大。

4.HTTP1.0和HTTP1.1的一些区别

HTTP1.0最早在网页中使用是在1996年,那个时候只是使用一些较为简单的网页上和网络请求上,而HTTP1.1则在1999年才开始广泛应用于现在的各大浏览器网络请求中,同时HTTP1.1也是当前使用最为广泛的HTTP协议主要区别主要体现在:

1.缓存处理

  • 在HTTP1.0中主要使用header里的If-Modified-Since,Expires来做为缓存判断的标准。
  • HTTP1.1则引入了更多的缓存控制策略例如Entity tag,If-Unmodified-Since, If-Match, If-None-Match等更多可供选择的缓存头来控制缓存策略。

2.带宽优化及网络连接的使用

  • HTTP1.0中,存在一些浪费带宽的现象,例如客户端只是需要某个对象的一部分,而服务器却将整个对象送过来了,并且不支持断点续传功能。

  • HTTP1.1则在请求头引入了range头域,它允许只请求资源的某个部分,即返回码是206(Partial Content),这样就方便了开发者自由的选择以便于充分利用带宽和连接。

3.错误通知的管理

  • 在HTTP1.1中新增了24个错误状态响应码,如409(Conflict)表示请求的资源与资源的当前状态发生冲突;410(Gone)表示服务器上的某个资源被永久性的删除。

4.Host头处理

  • 在HTTP1.0中认为每台服务器都绑定一个唯一的IP地址,因此,请求消息中的URL并没有传递主机名(hostname)。但随着虚拟主机技术的发展,在一台物理服务器上可以存在多个虚拟主机(Multi-homed Web Servers),并且它们共享一个IP地址。
  • HTTP1.1的请求消息和响应消息都应支持Host头域,且请求消息中如果没有Host头域会报告一个错误(400 Bad Request)。

5.长连接

  • HTTP 1.1支持长连接(PersistentConnection)和请求的流水线(Pipelining)处理,在一个TCP连接上可以传送多个HTTP请求和响应,减少了建立和关闭连接的消耗和延迟。
  • 在HTTP1.1中默认开启Connection: keep-alive,一定程度上弥补了HTTP1.0每次请求都要创建连接的缺点。以下是常见的HTTP1.0:

区别用一张图来体现:

5.HTTP1.0和1.1现存的一些问题

1.上面提到过的,HTTP1.x在传输数据时,每次都需要重新建立连接,无疑增加了大量的延迟时间,特别是在移动端更为突出。

2.HTTP1.x在传输数据时,所有传输的内容都是明文,客户端和服务器端都无法验证对方的身份,这在一定程度上无法保证数据的安全性。

3.HTTP1.x在使用时,header里携带的内容过大,在一定程度上增加了传输的成本,并且每次请求header基本不怎么变化,尤其在移动端增加用户流量。

4.虽然HTTP1.x支持了keep-alive,来弥补多次创建连接产生的延迟,但是keep-alive使用多了同样会给服务端带来大量的性能压力,并且对于单个文件被不断请求的服务(例如图片存放网站),keep-alive可能会极大的影响性能,因为它在文件被请求之后还保持了不必要的连接很长时间。

6.HTTPS应声而出

为了解决以上问题,网景在1994年创建了HTTPS,并应用在网景导航者浏览器中。 最初,HTTPS是与SSL一起使用的;在SSL逐渐演变到TLS时(其实两个是一个东西,只是名字不同而已),最新的HTTPS也由在2000年五月公布的RFC 2818正式确定下来。

简单来说,HTTPS就是安全版的HTTP,并且由于当今时代对安全性要求更高,chrome和firefox都大力支持网站使用HTTPS,苹果也在ios 10系统中强制app使用HTTPS来传输数据,由此可见HTTPS势在必行。

7.HTTPS与HTTP的一些区别

1.HTTPS协议需要到CA申请证书,一般免费证书很少,需要交费。

2.HTTP协议运行在TCP之上,所有传输的内容都是明文,HTTPS运行在SSL/TLS之上,SSL/TLS运行在TCP之上,所有传输的内容都经过加密的

3.HTTP和HTTPS使用的是完全不同的连接方式,用的端口也不一样,前者是80,后者是443。

4.HTTPS可以有效的防止运营商劫持,解决了防劫持的一个大问题。

8.HTTPS改造

如果一个网站要全站由HTTP替换成HTTPS,可能需要关注以下几点:

1.安装CA证书,一般的证书都是需要收费的,这边推荐一个比较好的购买证书网站:

1)Let’s Encrypt,免费,快捷,支持多域名(不是通配符),三条命令即时签署+导出证书。缺点是暂时只有三个月有效期,到期需续签。

2)Comodo PositiveSSL,收费,但是比较稳定。

2.在购买证书之后,在证书提供的网站上配置自己的域名,将证书下载下来之后,配置自己的web服务器,同时进行代码改造。

3.HTTPS 降低用户访问速度。SSL握手HTTPS 对速度会有一定程度的降低,但是只要经过合理优化和部署,HTTPS 对速度的影响完全可以接受。在很多场景下,HTTPS 速度完全不逊于 HTTP,如果使用 SPDY,HTTPS 的速度甚至还要比 HTTP 快。

4.相对于HTTPS降低访问速度,其实更需要关心的是服务器端的CPU压力,HTTPS中大量的密钥算法计算,会消耗大量的CPU资源,只有足够的优化,HTTPS 的机器成本才不会明显增加。

推荐一则淘宝网改造HTTPS的文章。

9.使用SPDY加快你的网站速度

2012年google如一声惊雷提出了SPDY的方案,大家才开始从正面看待和解决老版本HTTP协议本身的问题,SPDY可以说是综合了HTTPS和HTTP两者有点于一体的传输协议,主要解决:

1.降低延迟,针对HTTP高延迟的问题,SPDY优雅的采取了多路复用(multiplexing)。多路复用通过多个请求stream共享一个tcp连接的方式,解决了HOL blocking的问题,降低了延迟同时提高了带宽的利用率。

2.请求优先级(request prioritization)。多路复用带来一个新的问题是,在连接共享的基础之上有可能会导致关键请求被阻塞。SPDY允许给每个request设置优先级,这样重要的请求就会优先得到响应。比如浏览器加载首页,首页的html内容应该优先展示,之后才是各种静态资源文件,脚本文件等加载,这样可以保证用户能第一时间看到网页内容。

3.header压缩。前面提到HTTP1.x的header很多时候都是重复多余的。选择合适的压缩算法可以减小包的大小和数量。

4.基于HTTPS的加密协议传输,大大提高了传输数据的可靠性。

5.服务端推送(server push),采用了SPDY的网页,例如我的网页有一个sytle.css的请求,在客户端收到sytle.css数据的同时,服务端会将sytle.js的文件推送给客户端,当客户端再次尝试获取sytle.js时就可以直接从缓存中获取到,不用再发请求了。SPDY构成图:

SPDY位于HTTP之下,TCP和SSL之上,这样可以轻松兼容老版本的HTTP协议(将HTTP1.x的内容封装成一种新的frame格式),同时可以使用已有的SSL功能。

兼容性:

10.HTTP2.0的前世今生

顾名思义有了HTTP1.x,那么HTTP2.0也就顺理成章的出现了。HTTP2.0可以说是SPDY的升级版(其实原本也是基于SPDY设计的),但是,HTTP2.0 跟 SPDY 仍有不同的地方,主要是以下两点:

  • HTTP2.0 支持明文 HTTP 传输,而 SPDY 强制使用 HTTPS
  • HTTP2.0 消息头的压缩算法采用 HPACK,而非 SPDY 采用的 DEFLATE

11.HTTP2.0的新特性

  • 新的二进制格式(Binary Format),HTTP1.x的解析是基于文本。基于文本协议的格式解析存在天然缺陷,文本的表现形式有多样性,要做到健壮性考虑的场景必然很多,二进制则不同,只认0和1的组合。基于这种考虑HTTP2.0的协议解析决定采用二进制格式,实现方便且健壮
  • 多路复用(MultiPlexing),即连接共享,即每一个request都是是用作连接共享机制的。一个request对应一个id,这样一个连接上可以有多个request,每个连接的request可以随机的混杂在一起,接收方可以根据request的 id将request再归属到各自不同的服务端请求里面。多路复用原理图
  • header压缩,如上文中所言,对前面提到过HTTP1.x的header带有大量信息,而且每次都要重复发送,HTTP2.0使用encoder来减少需要传输的header大小,通讯双方各自cache一份header fields表,既避免了重复header的传输,又减小了需要传输的大小
  • 服务端推送(server push),同SPDY一样,HTTP2.0也具有server push功能。目前,有大多数网站已经启用HTTP2.0,例如YouTuBe淘宝网等网站,利用chrome控制台可以查看是否启用H2:

更多关于HTTP2的问题可以参考:HTTP2奇妙日常,以及HTTP2.0的官方网站

关于HTTP2和HTTP1.x的区别大致可以看下图:

12.HTTP2.0的升级改造

对比HTTPS的升级改造,HTTP2.0或许会稍微简单一些,你可能需要关注以下问题:

1.前文说了HTTP2.0其实可以支持非HTTPS的,但是现在主流的浏览器像chrome,firefox表示还是只支持基于 TLS 部署的HTTP2.0协议,所以要想升级成HTTP2.0还是先升级HTTPS为好。

2.当你的网站已经升级HTTPS之后,那么升级HTTP2.0就简单很多,如果你使用NGINX,只要在配置文件中启动相应的协议就可以了,可以参考NGINX白皮书NGINX配置HTTP2.0官方指南

3.使用了HTTP2.0那么,原本的HTTP1.x怎么办,这个问题其实不用担心,HTTP2.0完全兼容HTTP1.x的语义,对于不支持HTTP2.0的浏览器,NGINX会自动向下兼容的。

后记

1.以上就是关于HTTP,HTTP2.0,SPDY,HTTPS的一些基本理论,有些内容没有深入讲解,大家可以跟进参考连接具体查看。

2.关于HTTP1.x的一些优化方式,例如文件合并压缩,资源cdn,js,css优化等等同样使用与HTTP2.0和HTTPS,所以web前端的优化,还是要继续进行。

3.其实WEB发展如此迅速的今天,有些技术是真的要与时俱进的,就像苹果宣布ios 10必须使用HTTPS开始,关于web协议革新就已经开始了,为了更好的性能,更优越的方式,现在就开始升级改造吧

参考资料:


转自:http://www.alloyteam.com/2016/07/httphttp2-0spdyhttps-reading-this-is-enough/

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,948评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,371评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,490评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,521评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,627评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,842评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,997评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,741评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,203评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,534评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,673评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,339评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,955评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,770评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,000评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,394评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,562评论 2 349

推荐阅读更多精彩内容