2021-06-16 linux链接so

linux 下有动态库和静态库,动态库以.so为扩展名,静态库以.a为扩展名。二者都使用广泛。本文主要讲动态库方面知识。

基本上每一个linux 程序都至少会有一个动态库,查看某个程序使用了那些动态库,使用ldd命令查看

# ldd /bin/ls

linux-vdso.so.1 => (0x00007fff597ff000)

libselinux.so.1 => /lib64/libselinux.so.1 (0x00000036c2e00000)

librt.so.1 => /lib64/librt.so.1 (0x00000036c2200000)

libcap.so.2 => /lib64/libcap.so.2 (0x00000036c4a00000)

libacl.so.1 => /lib64/libacl.so.1 (0x00000036d0600000)

libc.so.6 => /lib64/libc.so.6 (0x00000036c1200000)

libdl.so.2 => /lib64/libdl.so.2 (0x00000036c1600000)

/lib64/ld-linux-x86-64.so.2 (0x00000036c0e00000)

libpthread.so.0 => /lib64/libpthread.so.0 (0x00000036c1a00000)

libattr.so.1 => /lib64/libattr.so.1 (0x00000036cf600000)

   这么多so,是的。使用ldd显示的so,并不是所有so都是需要使用的,下面举个例子

main.cpp

#include <stdio.h>

#include <iostream>

#include <string>

using namespace std;

int main ()

{

cout << "test" << endl;

return 0;

}

使用缺省参数编译结果

# g++ -o demo main.cpp

# ldd demo

linux-vdso.so.1 => (0x00007fffcd1ff000)

libstdc++.so.6 => /usr/lib64/libstdc++.so.6 (0x00007f4d02f69000)

libm.so.6 => /lib64/libm.so.6 (0x00000036c1e00000)

libgcc_s.so.1 => /lib64/libgcc_s.so.1 (0x00000036c7e00000)

libc.so.6 => /lib64/libc.so.6 (0x00000036c1200000)

/lib64/ld-linux-x86-64.so.2 (0x00000036c0e00000)

如果我链接一些so,但是程序并不用到这些so,又是什么情况呢,下面我加入链接压缩库,数学库,线程库

# g++ -o demo -lz -lm -lrt main.cpp

# ldd demo

linux-vdso.so.1 => (0x00007fff0f7fc000)

libz.so.1 => /lib64/libz.so.1 (0x00000036c2600000)

librt.so.1 => /lib64/librt.so.1 (0x00000036c2200000)

libstdc++.so.6 => /usr/lib64/libstdc++.so.6 (0x00007ff6ab70d000)

libm.so.6 => /lib64/libm.so.6 (0x00000036c1e00000)

libgcc_s.so.1 => /lib64/libgcc_s.so.1 (0x00000036c7e00000)

libc.so.6 => /lib64/libc.so.6 (0x00000036c1200000)

libpthread.so.0 => /lib64/libpthread.so.0 (0x00000036c1a00000)

/lib64/ld-linux-x86-64.so.2 (0x00000036c0e00000)

  看看,虽然没有用到,但是一样有链接进来,那看看程序启动时候有没有去加载它们呢

# strace ./demo

execve("./demo", ["./demo"], [/* 30 vars */]) = 0

... = 0

open("/lib64/libz.so.1", O_RDONLY) = 3

...

close(3) = 0

open("/lib64/librt.so.1", O_RDONLY) = 3

...

close(3) = 0

open("/usr/lib64/libstdc++.so.6", O_RDONLY) = 3

...

close(3) = 0

open("/lib64/libm.so.6", O_RDONLY) = 3

...

close(3) = 0

open("/lib64/libgcc_s.so.1", O_RDONLY) = 3

...

close(3) = 0

open("/lib64/libc.so.6", O_RDONLY) = 3

...

close(3) = 0

open("/lib64/libpthread.so.0", O_RDONLY) = 3

...

close(3) = 0

...

看,有加载,所以必定会影响进程启动速度,所以我们最后不要把无用的so编译进来,这里会有什么影响呢?

   大家知不知道linux从程序(program或对象)变成进程(process或进程),要经过哪些步骤呢,这里如果详细的说,估计要另开一篇文章。简单的说分三步:

    1、fork进程,在内核创建进程相关内核项,加载进程可执行文件;

    2、查找依赖的so,一一加载映射虚拟地址

    3、初始化程序变量。

  可以看到,第二步中dll依赖越多,进程启动越慢,并且发布程序的时候,这些链接但没有使用的so,同样要一起跟着发布,否则进程启动时候,会失败,找不到对应的so。所以我们不能像上面那样,把一些毫无意义的so链接进来,浪费资源。但是开发人员写makefile 一般有没有那么细心,图省事方便,那么有什么好的办法呢。继续看下去,下面会给你解决方法。

使用 ldd -u demo 查看不需要链接的so,看下面,一面了然,无用的so全部暴露出来了吧

# ldd -u demo

Unused direct dependencies:

/lib64/libz.so.1

/lib64/librt.so.1

/lib64/libm.so.6

/lib64/libgcc_s.so.1

使用-Wl,--as-needed 编译选项

# g++ -Wl,--as-needed -o demo -lz -lm -lrt main.cpp

# ldd demo

linux-vdso.so.1 => (0x00007fffebfff000)

libstdc++.so.6 => /usr/lib64/libstdc++.so.6 (0x00007ff665c05000)

libc.so.6 => /lib64/libc.so.6 (0x00000036c1200000)

libm.so.6 => /lib64/libm.so.6 (0x00000036c1e00000)

/lib64/ld-linux-x86-64.so.2 (0x00000036c0e00000)

libgcc_s.so.1 => /lib64/libgcc_s.so.1 (0x00000036c7e00000)

# ldd -u demo

Unused direct dependencies:

我们知道linux链接so有两种途径:显示和隐式。所谓显示就是程序主动调用dlopen打开相关so;这里需要补充的是,如果使用显示链接,上篇文章讨论的那些问题都不存在。首先,dlopen的so使用ldd是查看不到的。其次,使用dlopen打开的so并不是在进程启动时候加载映射的,而是当进程运行到调用dlopen代码地方才加载该so,也就是说,如果每个进程显示链接a.so;但是如果发布该程序时候忘记附带发布该a.so,程序仍然能够正常启动,甚至如果运行逻辑没有触发运行到调用dlopen函数代码地方。该程序还能正常运行,即使没有a.so.


  既然显示加载这么多优点,那么为什么实际生产中很少码农使用它呢, 主要原因还是起使用不是很方便,需要开发人员多写不少代码。所以不被大多数码农使用,还有一个重要原因应该是能提前发现错误,在部署的时候就能发现缺少哪些so,而不是等到实际上限运行的时候才发现缺东少西。


  下面举个工作中最常碰到的问题,来引申出本篇内容吧。

写一个最简单的so tmp.cpp

1.    int test()

2.    {

3.      return 20;

4.    }

  编译=>链接=》运行, 下面main.cpp 内容请参见上一篇文章。

[stevenrao]$ g++ -fPIC -c tmp.cpp

[stevenrao]$ g++ -shared -o libtmp.so tmp.o

[stevenrao]$ mv libtmp.so /tmp/

[stevenrao]$ g++ -o demo -L/tmp -ltmp main.cpp

[stevenrao]$ ./demo

./demo: error while loading shared libraries: libtmp.so: cannot open shared object file: No such file or directory

[stevenrao]$ ldd demo

linux-vdso.so.1 =>  (0x00007fff7fdc1000)

        libtmp.so => not found

这个错误是最常见的错误了。运行程序的时候找不到依赖的so。一般人使用方法是修改LD_LIBRARY_PATH这个环境变量

   export LD_LIBRARY_PATH=/tmp

[stevenrao]$ ./demo

test

   这样就OK了, 不过这样export 只对当前shell有效,当另开一个shell时候,又要重新设置。可以把export LD_LIBRARY_PATH=/tmp 语句写到 ~/.bashrc中,这样就对当前用户有效了,写到/etc/bashrc中就对所有用户有效了。

前面链接时候使用 -L/tmp/ -ltmp 是一种设置相对路径方法,还有一种绝对路径链接方法

[stevenrao]$ g++ -o demo  /tmp/libtmp.so main.cpp

[stevenrao]$ ./demo

  test

[stevenrao]$ ldd demo

        linux-vdso.so.1 =>  (0x00007fff083ff000)

        /tmp/libtmp.so (0x00007f53ed30f000) 

绝对路径虽然申请设置环境变量步骤,但是缺陷也是致命的,这个so必须放在绝对路径下,不能放到其他地方,这样给部署带来很大麻烦。所以应该禁止使用绝对路径链接so


搜索路径分两种,一种是链接时候的搜索路径,一种是运行时期的搜索路径。像前面提到的 -L/tmp/ 是属于链接时期的搜索路径,即给ld程序提供的编译链接时候寻找动态库路径;而LD_LIBRARY_PATH则既属于链接期搜索路径,又属于运行时期的搜索路径。


   这里需要介绍链-rpath链接选项,它是指定运行时候都使用的搜索路径。聪明的同学马上就想到,运行时搜索路径,那它记录在哪儿呢。也像. LD_LIBRARY_PATH那样,每部署一台机器就需要配一下吗。呵呵,不需要..,因为它已经被硬编码到可执行文件内部了。看看下面演示


1.   [stevenrao] $g++ -o demo -L /tmp/ -ltmp main.cpp

2.   [stevenrao] $./demo

3.   ./demo: error while loading shared libraries: libtmp.so: cannot open shared object file: No such file or directory

4.   [stevenrao] $g++ -o demo -Wl,-rpath /tmp/ -L/tmp/ -ltmp main.cpp

5.   [stevenrao] $ ./demo

6.   test

7.   [stevenrao] $readelf -d demo

8.    

9.   Dynamic section at offset 0xc58 contains 26 entries:

10.    Tag        Type                         Name/Value

11.   0x0000000000000001 (NEEDED)             Shared library: [libtmp.so]

12.   0x0000000000000001 (NEEDED)             Shared library: [libstdc++.so.6]

13.   0x0000000000000001 (NEEDED)             Shared library: [libm.so.6]

14.   0x0000000000000001 (NEEDED)             Shared library: [libgcc_s.so.1]

15.   0x0000000000000001 (NEEDED)             Shared library: [libc.so.6]

16.   0x000000000000000f (RPATH)              Library rpath: [/tmp/]

17.   0x000000000000001d (RUNPATH)            Library runpath: [/tmp/]

   看看是吧,编译到elf文件内部了,路径和程序深深的耦合到一起

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,377评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,390评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,967评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,344评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,441评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,492评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,497评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,274评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,732评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,008评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,184评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,837评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,520评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,156评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,407评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,056评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,074评论 2 352

推荐阅读更多精彩内容