Given a string s and a non-empty string p, find all the start indices of p's anagrams in s.
Strings consists of lowercase English letters only and the length of both strings s and p will not be larger than 20,100.
The order of output does not matter.
Example 1:
Input:
s: "cbaebabacd" p: "abc"
Output:
[0, 6]
Explanation:
The substring with start index = 0 is "cba", which is an anagram of "abc".
The substring with start index = 6 is "bac", which is an anagram of "abc".
Example 2:
Input:
s: "abab" p: "ab"
Output:
[0, 1, 2]
Explanation:
The substring with start index = 0 is "ab", which is an anagram of "ab".
The substring with start index = 1 is "ba", which is an anagram of "ab".
The substring with start index = 2 is "ab", which is an anagram of "ab".
Solution: 滑动窗
思路:
Time Complexity: O(N) Space Complexity: O(M)
Solution Code:
class Solution {
public List<Integer> findAnagrams(String s, String p) {
List<Integer> list = new ArrayList<>();
if (s == null || s.length() == 0 || p == null || p.length() == 0) return list;
int[] hash = new int[256]; //character hash
//record each character in p to hash
for (char c : p.toCharArray()) {
hash[c]++;
}
//two points, initialize count to p's length
int left = 0, right = 0, count = p.length();
while (right < s.length()) {
//move right everytime, if the character exists in p's hash, decrease the count
//current hash value >= 1 means the character is existing in p
if (hash[s.charAt(right++)]-- >= 1) count--;
//when the count is down to 0, means we found the right anagram
//then add window's left to result list
if (count == 0) list.add(left);
//if we find the window's size equals to p, then we have to move left (narrow the window) to find the new match window
//++ to reset the hash because we kicked out the left
//only increase the count if the character is in p
//the count >= 0 indicate it was original in the hash, cuz it won't go below 0
if (right - left == p.length() && hash[s.charAt(left++)]++ >= 0) count++;
}
return list;
}
}