数据分析:R与Python怎么选?

一、R与Python都有啥?

*   **R**

相信各位有数理统计、金融计量、生物科学背景的同学对R语言都不陌生,而且他们的毕业论文和期刊论文的写作很可能已经用到了R。
R自带常用的统计分析函数和十分丰富的功能包支持。例如,可以用R快速生成1000条符合正态分布或卡方分布的数据,在分析相关的问题时,它可以帮你节省不少的时间;例如,你用Excel、PPT或者Tableau制作的图表和报告,用R也能一样的制作,而且可以程序化部署,定期自动更新数据生成图表和分析报告;再例如,对常用的数据分析方法和机器学习算法都可以通过加载相关的包,直接调用函数使用,即使非常复杂的算法,也可以只通过两三行的代码搞定。此外,R标配的IDE-Rstudio,用户有着很好的交互和使用体验。

*   **Python**

“假如某一天,你在马路边随机问一个刚放学的小朋友,可能他不知道R,但他一定听说过Python”。可见,要说近年来最风靡、最流行的计算机语言,绝对非python莫属了。

相对于C和JAVA语言,Python的学习门槛更低,无需繁杂的变量声明等特点,大幅减少程序员的操作负担,同时语法结构接近英文表达,易于读写,甚至被称为最“优雅”的编程语言。更重要的是,Python不仅运用于后端计算服务和前端网页开发,也同样能处理数据分析、机器学习的问题,具有很强的扩展性和兼容性,你能想到的它几乎都能做到,十分神奇。

*   **R vs Pyhon**

R和Python 都是高级分析工具,各自都有众多的簇拥者和强大的社区支持,在网络爬虫、数据加工、数据可视化、统计分析、机器学习、深度学习等领域都有丰富第三方包提供调用。以下罗列R和python在各数据工作领域的资料信息,看看它们都有啥?

R与Python,有强大的社区资源,可供学习和经验分享:

| R语言 | Python语言 |
| R journal
链接:[https://journal.r-project.org](https://link.zhihu.com/?target=https%3A//journal.r-project.org) Stack Overflow 链接:[https://stackoverflow.com/](https://link.zhihu.com/?target=https%3A//stackoverflow.com/) Rweekly 链接:[https://rweekly.org/](https://link.zhihu.com/?target=https%3A//rweekly.org/) | Python中文社区维基
链接:[https://python-chinese.github.io/](https://link.zhihu.com/?target=https%3A//python-chinese.github.io/) python中文学习大本营 链接:[http://www.pythondoc.com/](https://link.zhihu.com/?target=http%3A//www.pythondoc.com/) PythonTab 链接:[https://www.pythontab.com/](https://link.zhihu.com/?target=https%3A//www.pythontab.com/) |

在不同数据场景下,R和Python有丰富的第三包可供加载和框架选择,可以很好帮助分析师、研究员以及开发员提高工作效率:


图片.png
| 功能名称 | R语言 | Python语言 |
| 爬虫 | Rvest、Rcurl、httr、XML、Rwebdriver | Urllib、requests、bs4、selenium、splash |
| 数据读取 | Openxlsx、utils、readxl、xlsx、xlsx2、data.table | pandas |
| 数据加工(ETL) | Plyr、dplyr、reshape2、caret、tidyr、mice、stringr | numpy、pandas、sklearn、re |
| 数据可视化 | ggplot2、ggmap、lattice、gganimate、leaflet、REmap、plotly、rCharts、animation | Matplotlib、seaboen、bokeh、pyecharts、Pygal |
| 统计分析、回归分析 | Stats、tseries、lmtest、nlme | statsmodels、scipy |
| 机器学习 | Stats、glmnet | statsmodels、scipy |
| 深度学习 | Keras、MXNetR、darch、deepnet、H2O、deepr | TensorFlow、Keras、Pytorch、Theano、MXNET |

通过加载不同的功能包,用户可以在用少量的代码下,快速实现算法逻辑:


图片.png
| 算法名称 | R语言 | Python语言 |
| 决策树算法 | Repart、party、C50、RWeka | sklearn |
| 集成算法 | adabag、randomForest | sklearn、xgboost |
| 贝叶斯算法 | klaR | sklearn |
| K邻近算法 | Stats、kknn | sklearn |
| 支持向量机 | Kernlab、e1071 | sklearn |
| 神经网络 | RSNNS、neuralnet、nnet | Neurolab、tensorflow |
| 聚类算法 | stats、Nbclust、fpc、mclust | sklearn |
| 关联规则 | arules | mlxtend |

这么看,好像R和Python能做的事情都差不多,在主要的数据处理场景,双方都可以通过加载包和调用函数来解决问题。然而,二者虽然彼此功能覆盖,但却不能因此说他们之间没有区别,它们还是有各自独特的地方:

*   在**深度学习**领域,例如自然语言处理、图像识别等。相对于R,Python对GPU有更好的支持,虽然R也支持KERAS运算,但是实现效率较低、成本较高,你可以想象这样的一个场景,当你使用R做深度学习时,经历一番搜索和研究,刚把需要的环境搭建好,人家用Python的已经可以提交项目结果了。因此,在深度学习领域,Python会有更好的表现。
*   在**机器学习**领域,Python与R算是难分仲伯,可能Python还是略好于R一些。最主要原因是每当有新的套件或者算法时,基本是用Python先开发出来。Python这样的优势还体现在网络爬虫领域,尤其是研发人员在进行一些比较复杂的爬虫任务时,Python会有更多的资源,包含方法和套件。除此之外,在计算效率、计算稳定性等方面两者并无显著差异。
*   在**统计分析**领域,R的综合表现更优于Python。R最早是统计学家为统计工作所开发的工具,他们甚至通过R代码和程序来交流分析思想,许多比较复杂的统计模型和统计检验方法在R上都可以比较轻松的实现。本人也曾参与过一些项目的统计分析工作,并借机对比Python和R处理同样任务的执行情况,R确实会比Python方便不少。
*   在**数据可视化**领域,虽然Python有一些很好的可视化程序库,例如Seaborn、Bokeh和Pygal,但与R对比,在Python中进行可视化有些复杂,可调节的参数较少,且图表样式的控制会更麻烦一些。对于一个分析师或一个研发人员,在历经“艰辛”得到分析结果后,却需要花很多时间调整可视化展示结果,其实是会缺少耐心的,而R在这方面的会给出更好的体验。

对比Python,R还有一个不得不提的优点,就是基于web交互界面应用框架Shiny,和Desktop版Rstudio,它们安装简单,部署方便,在第三方资源包管理、脚本编辑、变量管理、数据预览、结果呈现方面都为使用者提供了很大的便利。
另外,R与Python也并不是完全孤立的。在R中,用户可以通过rPython包运行Python代码,调用Python的函数。而在Python中,也可以使用RPy2包运行R代码,同样提供了一个从Python到R的输送路径,基本实现了用户“取二者精华而用之“的美好愿景。

本次对R和Python的分析更多的体现在“定性”层面,关于“定量”层面的对比(计算性能方面的对比),如果有合适机会,将会继续分享。想了解“定量”层面对比的读者,可以阅读以下网络上“前辈‘们的文章:
推荐文章1:如何将Python和R整合进一个数据分析流程
推荐文章2:大数据分析Python和R的优缺点
推荐文章3:Python与R的争锋:大数据初学者该怎样选?
二、R与Python选哪个?

那么,说了这么多,R与Python到底应该学哪个?通过以下两个问题的回答,希望你的心中能有你想要的答案。

第一个问题是:你的公司同事们现在使用哪种语言?

所有的工具的使用的最终目的,是为方便发现问题和为问题寻求最优解决方案的,因此建议学习某种语言前,应该以解决问题为首要目标。如果你发现你的公司或者你所在的部门已经开始运用某种语言作为分析工具(不局限于Python或者R),那么建议你优先考虑该语言,因为你的“所学“可以立马转化为你的”所用“,进而反过来继续促使你”学“,周而复始,对知识频繁的输入和输出,这是最有效的成长和价值体现方式。不仅如此,这样的方式也方便你与同事分享和维护代码,提高沟通和协同工作的效率,更容易实现公司成果产出,这比单纯讨论哪种语言更”牛逼“更为重要。

第二个问题是:你准备花多少时间学习?需要解决什么样的问题?

面对问题,当你精力有限时,你不得不面临指标是投入产出比,即,如何解决同样的问题花最少的时间,或者花同样的时间解决更多的问题。
在学习时间方面:刚开始学习R时有一个陡峭的学习曲线,到后面趋于平缓,因此R的入门门槛较高,但是一旦了解了最基本的知识,就能比较容易的学习更高级的内容。而与之对应的是,Python语句易读易懂,学习曲线起始阶段相对较低且平缓,到后面会逐渐陡峭,也就是Python入门门槛低,但是到后续更深层的高级应用时,学习会比较困难。
在问题类型方面:经过上文阐述,在深度学习、机器学习、网络爬虫和API构建,Python的综合实力要优于R;而在数理统计分析、数据处理、数据可视化及IDE交互体验,R的综合表现要优于Python。
因为文章着重讨论“数据分析,R与Python怎么选?”,也考虑数据分析师的职业发展路径,因此在统计分析、数据可视化、数据处理、机器学习、深度学习这五个相关的领域,结合时间成本,给出建议如下:

写在最后


图片.png

文章的建议是在特定场景和有限资源的前提下,选择R或者Python开始数据分析师“菜鸟时期”的工作。但是,R和Python在实际运用中它们各有所长,各具价值,日后随着解决的问题越多,值得深挖的点也会越来越多,如果还是专注于”R还是Python?”的问题,那么就会忽视这两者给数据工作的带来的最大价值。作者还是强调,任何工具的学习和运用,最终的目的都是帮助更好的发现问题和解决问题,至于R还是Python,当你还在纠结这个选项的时候,许多团队已经同时装备着R和Python,解决了一个又一个问题了!

感谢作者:
原创来自---->
https://www.zhihu.com/people/liberator77
解放者will
洞察百态,不落世俗断见;人生尽头,希望小有成就。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,837评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,551评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,417评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,448评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,524评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,554评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,569评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,316评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,766评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,077评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,240评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,912评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,560评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,176评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,425评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,114评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,114评论 2 352

推荐阅读更多精彩内容