JanusGraph 0.2.0 gremlin-hadoop数据导入配置

janusgraph 0.2.0 相关问题与解决方案

  • 由于janusgraph 0.2.0的lib文件夹下面缺少hadoop-hdfs-2.7.2.jar,需要手动添加相关文件到lib文件夹下面。
  • No FileSystem for scheme: hdfs这个问题需要在hadoop的配置文件core-site.xml中添加如下配置
 <property>
    <name>fs.hdfs.impl</name>
    <value>org.apache.hadoop.hdfs.DistributedFileSystem</value>
</property>

环境变量配置

# gremlin console的地址。这个配置是可选项目,用于解决janusgraph缺少相关jar的问题。
export GREMLIN_HOME=/opt/apache-tinkerpop-gremlin-console-3.2.6
# hadoop的配置文件地址
export HADOOP_CONF_DIR=/etc/hadoop/conf
# gremlin console下载的插件的lib文件地址。这个配置是可选项目,用于解决janusgraph缺少相关jar的问题。
export HADOOP_GREMLIN_LIBS=$GREMLIN_HOME/ext/hadoop-gremlin/plugin:$GREMLIN_HOME/ext/spark-gremlin/plugin
export HBASE_CONF_DIR=/etc/hbase/conf
export CLASSPATH=$HADOOP_CONF_DIR:$HADOOP_GREMLIN_LIBS:$HBASE_CONF_DIR

如果手动添加了相关jar,则不需要配置gremlin console的相关配置项。安装gremlin-console插件的步骤

  • hadoop插件
  • :install org.apache.tinkerpop hadoop-gremlin 3.2.6
  • :plugin use tinkerpop.hadoop
  • giraph-gremlin插件
  • :install org.apache.tinkerpop giraph-gremlin 3.2.6
  • :plugin use tinkerpop.giraph
  • spark-gremlin插件
  • :install org.apache.tinkerpop spark-gremlin 3.2.6
  • :plugin use tinkerpop.spark

导入数据并查询

bin/gremlin.sh

         \,,,/
         (o o)
-----oOOo-(3)-oOOo-----
plugin activated: janusgraph.imports
gremlin> :plugin use tinkerpop.hadoop
==>tinkerpop.hadoop activated
gremlin> :plugin use tinkerpop.spark
==>tinkerpop.spark activated
gremlin> :load data/grateful-dead-janusgraph-schema.groovy
==>true
==>true
gremlin> graph = JanusGraphFactory.open('conf/janusgraph-hbase.properties')
==>standardjanusgraph[hbase:[kg-server-96.kg.com, kg-agent-95.kg.com, kg-agent-97.kg.com]]
gremlin> defineGratefulDeadSchema(graph)
==>null
gremlin> graph.close()
==>null
gremlin> if (!hdfs.exists('data/grateful-dead.kryo')) hdfs.copyFromLocal('data/grateful-dead.kryo','data/grateful-dead.kryo')
==>null
gremlin> graph = GraphFactory.open('conf/hadoop-graph/hadoop-load.properties')
==>hadoopgraph[gryoinputformat->nulloutputformat]
gremlin> blvp = BulkLoaderVertexProgram.build().writeGraph('conf/janusgraph-hbase.properties').create(graph)
==>BulkLoaderVertexProgram[bulkLoader=IncrementalBulkLoader,vertexIdProperty=bulkLoader.vertex.id,userSuppliedIds=false,keepOriginalIds=true,batchSize=0]
gremlin> graph.compute(SparkGraphComputer).program(blvp).submit().get()
...
==>result[hadoopgraph[gryoinputformat->nulloutputformat],memory[size:0]]
gremlin> graph.close()
==>null
gremlin> graph = GraphFactory.open('conf/hadoop-graph/read-hbase.properties')
==>hadoopgraph[cassandrainputformat->gryooutputformat]
gremlin> g = graph.traversal().withComputer(SparkGraphComputer)
==>graphtraversalsource[hadoopgraph[cassandrainputformat->gryooutputformat], sparkgraphcomputer]
gremlin> g.V().count()
...
==>808

相关配置文件

janusgraph-hbase.properties

gremlin.graph=org.janusgraph.core.JanusGraphFactory
storage.backend=hbase
storage.hostname= kg-server-96.kg.com,kg-agent-95.kg.com,kg-agent-97.kg.com
cache.db-cache=true
cache.db-cache-clean-wait=20
cache.db-cache-time=180000
cache.db-cache-size=0.5
index.search.backend=elasticsearch
index.search.hostname=10.110.18.52
storage.hbase.ext.zookeeper.znode.parent=/hbase-unsecure
storage.hbase.table=Medical-POC
index.search.index-name=Medical-POC

grateful-dead-janusgraph-schema.groovy

def defineGratefulDeadSchema(janusGraph) {
    m = janusGraph.openManagement()
    // vertex labels
    artist = m.makeVertexLabel("artist").make()
    song   = m.makeVertexLabel("song").make()
    // edge labels
    sungBy     = m.makeEdgeLabel("sungBy").make()
    writtenBy  = m.makeEdgeLabel("writtenBy").make()
    followedBy = m.makeEdgeLabel("followedBy").make()
    // vertex and edge properties
    blid         = m.makePropertyKey("bulkLoader.vertex.id").dataType(Long.class).make()
    name         = m.makePropertyKey("name").dataType(String.class).make()
    songType     = m.makePropertyKey("songType").dataType(String.class).make()
    performances = m.makePropertyKey("performances").dataType(Integer.class).make()
    weight       = m.makePropertyKey("weight").dataType(Integer.class).make()
    // global indices
    m.buildIndex("byBulkLoaderVertexId", Vertex.class).addKey(blid).buildCompositeIndex()
    m.buildIndex("artistsByName", Vertex.class).addKey(name).indexOnly(artist).buildCompositeIndex()
    m.buildIndex("songsByName", Vertex.class).addKey(name).indexOnly(song).buildCompositeIndex()
    // vertex centric indices
    m.buildEdgeIndex(followedBy, "followedByWeight", Direction.BOTH, Order.decr, weight)
    m.commit()
}

hadoop-load.properties

#
# Hadoop Graph Configuration
#
gremlin.graph=org.apache.tinkerpop.gremlin.hadoop.structure.HadoopGraph
gremlin.hadoop.graphInputFormat=org.apache.tinkerpop.gremlin.hadoop.structure.io.gryo.GryoInputFormat
gremlin.hadoop.graphOutputFormat=org.apache.hadoop.mapreduce.lib.output.NullOutputFormat
gremlin.hadoop.inputLocation=./data/grateful-dead.kryo
gremlin.hadoop.outputLocation=output
gremlin.hadoop.jarsInDistributedCache=true

#
# GiraphGraphComputer Configuration
#
giraph.minWorkers=2
giraph.maxWorkers=2
giraph.useOutOfCoreGraph=true
giraph.useOutOfCoreMessages=true
mapred.map.child.java.opts=-Xmx1024m
mapred.reduce.child.java.opts=-Xmx1024m
giraph.numInputThreads=4
giraph.numComputeThreads=4
giraph.maxMessagesInMemory=100000

#
# SparkGraphComputer Configuration
#
spark.master=local[*]
spark.executor.memory=1g
spark.serializer=org.apache.spark.serializer.KryoSerializer

read-hbase.properties

#
# Hadoop Graph Configuration
#
gremlin.graph=org.apache.tinkerpop.gremlin.hadoop.structure.HadoopGraph
gremlin.hadoop.graphInputFormat=org.janusgraph.hadoop.formats.hbase.HBaseInputFormat
gremlin.hadoop.graphOutputFormat=org.apache.tinkerpop.gremlin.hadoop.structure.io.gryo.GryoOutputFormat

gremlin.hadoop.jarsInDistributedCache=true
gremlin.hadoop.inputLocation=none
gremlin.hadoop.outputLocation=output

#
# JanusGraph HBase InputFormat configuration
#
janusgraphmr.ioformat.conf.storage.backend=hbase
#只需要配置一个hbase节点的ip就可以
janusgraphmr.ioformat.conf.storage.hostname=127.0.0.1
janusgraphmr.ioformat.conf.storage.hbase.table=Medical-POC
#如果不配置会报org.apache.hadoop.hbase.client.RetriesExhaustedException: Can't get the locations
zookeeper.znode.parent=/hbase-unsecure

#
# SparkGraphComputer Configuration
#
spark.master=local[4]
spark.serializer=org.apache.spark.serializer.KryoSerializer
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,717评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,501评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,311评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,417评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,500评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,538评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,557评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,310评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,759评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,065评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,233评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,909评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,548评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,172评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,420评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,103评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,098评论 2 352

推荐阅读更多精彩内容