数据埋点那些事儿

背景

     最近做了公司关于产品的数据埋点项目,主要是做和移动端的数据埋点。所以做个小总结,顺道回顾展开讲一讲关于app埋点应该注意的问题以及应该关注的指标(具体要结合各公司产品特性),主要是全新的埋点,如果单独的功能模块需要加上埋点则简单很多 直接在需求说明里面加上埋点需求即可。

数据分析的  道、术、器

     我们都知道今日头条是一家在数据分析、数据驱动方便做得非常优秀公司。数据分析的“道” 也就是一个公司能从战略意义上明白数据的重要性,不是拍脑袋,也不是拍大腿。建立在数据分析的基础上进行项目决策(实际操作要克服很大的阻力)。找到最优的产品方案。“术”既是分析的方法,俗称套路, “器” 主要是工具,数据埋点的工具我会在问末尾介绍。

app数据分析的原理

 分类:根据采集数据端的不同,主要分为网页数据采集、APP数据采集。网页数据的主要是使用JS采集,APP数据采集主要是通过埋点采集,主要有客户端(前端)埋点和服务端(后端)埋点之分。客户端的埋点是记录的用户在客户端的操作记录,服务端埋点则是记录的客户进行服务器请求的日志。

    这次结合公司的实际情况,使用的是百度移动,在app中嵌入第三方平台的SDK进行客户端的数据收集,然后在第三方平台上进行数据的可视化与分析。

埋点的步骤

确认主题——确认指标——分解指标事件——点位统计——开发沟通调整——进行埋点——数据收集——分析

确认主题

    我们埋点主要是为了什么? why so?  so what? 这次埋点主要是为了了解用户的使用习惯、各个板块的转化情况,还是为了了解上线的两个功能进行A/B测试。比如我们这次埋点就是为了能了解app端的使用现状。用户增长情况、各板块的访问情况、页面跳转、区域分布、搭建转化漏斗。

确认指标

    根据主题拆解为不同的指标,比如用户增长可以拆解为新用户注册量、新老用户占比、日活跃、月活跃等指标。

指标分类

    指标方面按照核心指标和衍生指标进行一个初步的拆分,各个公司可以根据各个公司的情况进行增减。

分解指标事件

    把指标按照计算方式拆分成事件,客户端埋点一般都是采取key-value的形式,key代表某个事件,value代表相应的参数值,这个在sdk埋点中不用过多考虑。

    需要注意的是要在第三方平台上,上传/手动命名相应的事件ID与事件名称,一定要代码中的ID与名称一致。ID与名称iOS 与Android保持一致,命名的工作一般是由产品来做,有的也可以让研发提,两边统一即可。

    确认好事件之后就可以统计埋点的点位了,汇总成一个excel表格即可,埋点位置,数据类型。确认好了一定要和研发讨论确认实现的方案,合理采用不同的埋点方式。

现在的平台一般提供3种方案。

代码埋点:控件操作发生时通过添加的代码来发送数据。优点:控制发送数据时间,事件自定义属性详细记录;缺点:时间、人力成本大。

可视化埋点:直接在客户端进行可视化圈选,通过可视化界面配置控件操作与事件操作发生关系进行数据采集。优点:产品可直接操作,成本低,速度快;缺点:行为记录信息少,数据准确度不高。

无埋点:用户展现界面元素时,通过控件绑定触发事件,事件被触发的时候系统会有相应的接口让开发者处理这些行为。现在市面上主流无埋点做法有两种,一种是预先跟踪所有的渲染信息,一种是滞后跟踪的渲染信息。优点:无需埋点;缺点:记录信息少。

进行埋点,数据收集

    埋点过程中有埋点问题的要及时沟通,埋点事件名称切记不能随意修改导致两边不同,这会给后期数据分析造成干扰。埋点完成后需要一段时间进行数据收集,一般第二天会开始数据统计,稳定一两周查看是否有异常,没有就可以进行数据分析了。

数据分析

    这个结合指定的埋点主题进行相应的数据分析,大部分的数据平台都会提供报告制作功能,相应的拖拽就能完成数据的之前发的产品运营的文章分析即可。通过描述性分析、预测性分析 对收集到的数据进行解读。

截图来源:神策数据DEMO

有坑注意

如果事无巨细的进行埋点是一项非常大的工程,少则一两百项多则几百个点位,全部使用代码埋点工作量巨大。所以埋点前先要确认主要目的,核心指标,其他的都达不成时必须要的部分,剩下的可以分期、分步逐步加上。

埋好点后及时进行跟进,落实埋点的完整性与准确性。

很多数据后台都可以查到,收集的数据也更详细,而且实现可能更简单。所以进行埋点前要提前确认,哪些在第三方平台统计,哪些在后台统计。

不同第三方平台对于时间ID与名称可能会有不同限制,但一定要注意名称的统一,ios和android  代码处的和平台填写的。

每个点都有一个专属ID,尽量能按照类型分组,便于后期分析的时候查找。

移动应用数据分析平台

GrowingIO

百度移动统计

神策分析

腾讯移动分析

谷歌GA

总结

    这次埋点还是有很多遗漏的地方,需要后续进行补充。另外,埋点只是数据分析的基础,对数据按照套路进行分析,形成参考才能体现数据的价值。

    更重要的是需要管理层能对数据驱动(Data-Driven)能有足够的重视,用数据说话,用数据做参考。结合产品数据进行问题排查、功能优化、业务探索、试错并及时修正。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,294评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,780评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,001评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,593评论 1 289
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,687评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,679评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,667评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,426评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,872评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,180评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,346评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,019评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,658评论 3 323
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,268评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,495评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,275评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,207评论 2 352

推荐阅读更多精彩内容