22、pandas的分组取最大多行并求和函数nlargest()

在pandas库里面,我们常常关心的是最大的前几个,比如销售最好的几个产品,几个店,等。之前讲到的head(), 能够看到看到DF里面的前几行,如果需要看到最大或者最小的几行就需要先进行排序。max()和min()可以看到最大或者最小值,但是只能看到一个值。

源数据

所以我们可以使用nlargest()函数,nlargest()的优点就是能一次看到最大的几行,而且不需要排序。缺点就是只能看到最大的,看不到最小的。

我们来看看单价排在前十的数据:

单价排在前十的数据

nlargest()的第一个参数就是截取的行数。第二个参数就是依据的列名。

这样就可以筛选出单价最高的前十行,而且是按照单价从最高到最低进行排列的,所以还是按照之前的索引。

还可以按照total_price来进行排名:

按照total_price排名

nlargest还有一个参数,keep='first'或者'last'。当出现重复值的时候,keep='first',会选取在原始DataFrame里排在前面的,keep='last'则去排后面的。

由于nlagerst()不能去最小的多个值,如果我们一定要使用这个函数进行选取也是可以的.

先设置一个辅助列:

先设置一个辅助列

然后在进行选取:

以辅助列进行选取

当然了,也可以通过head()加上排序进行选取的。

那以前这些操作都可以通过其它函数来进行替代的话,nlargest()有什么必要介绍吗?或者说学不学这个函数有什么关系吗?

这就是我们今天要重点介绍的,如果说要选择不同location_road下的前五名要怎么操作呢?

很多人可能第一反应会想到先分组然后进行max()操作,但是这样的操作只能选择最大的一列:

使用max()

但是使用max有一个问题,就是选取的是每一列的最大值,而不是选取最大值的那一行,也就是说只能在选取单列的最大值的时候才是准确的。

这个时候我们就要想到apply和lambda的自定义函数了:

选取多个指标的TOP(N)

这样就选出了不同loaction_road的price排在前五的行了。

nlargest()函数在这种场景下使用是非常方便的,而且结果也已经默认排好顺序了。

还有一些场景下需要计算分组的前几名,然后在进行求和的,这个我们也可以使用nlargest进行操作:

分组之后进行求和

使用这种方法会出现报错提示,这个因为在列和索引都存在loaction_road,有重复,系统有警告,在实际使用时可以先改列名再操作。我们也可以换一种方式直接按照索引进行求和,这样就没有警告了:

分组之后进行求和
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,504评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,434评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,089评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,378评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,472评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,506评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,519评论 3 413
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,292评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,738评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,022评论 2 329
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,194评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,873评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,536评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,162评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,413评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,075评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,080评论 2 352

推荐阅读更多精彩内容

  • Android 自定义View的各种姿势1 Activity的显示之ViewRootImpl详解 Activity...
    passiontim阅读 171,971评论 25 707
  • Spring Cloud为开发人员提供了快速构建分布式系统中一些常见模式的工具(例如配置管理,服务发现,断路器,智...
    卡卡罗2017阅读 134,646评论 18 139
  • 大家好!我来自思涵创业平台我叫创业如歌 所有的商机来临时都是这样: 远听 忽悠人! 了解 留住人! 走进 造就人!...
    创业如歌666简书凤芹阅读 428评论 0 1
  • 脊梁在成长背负,世界的行囊脚步铿锵,黑板是一座碑只能稚嫩的喘息,仰望 铅笔头嘲笑,逃吧回头看看,窗口有母亲的凝望爬...
    刘汉皇阅读 222评论 0 1
  • 粤语方舟 第231期 国:去到很远的地方都找不到一家像样一点的餐厅。 粤:去到冇雷公咁远都搵唔到一间似样啲嘅餐厅。...
    笑小天阅读 678评论 0 0