Spark安装及调试摘录

前置

centos7系统 spark版本  scala版本匹配

安装包下载

wget https://downloads.lightbend.com/scala/2.12.6/scala-2.12.6.rpm

wget https://www.apache.org/dyn/closer.lua/spark/spark-2.3.1/spark-2.3.1-bin-hadoop2.7.tgz

备注:spark安装的机器scala同步安装

远程调试Spark的job(local模式)

(1)  在$SPARK_HOME的conf目录下的spark-env.sh文件中添加环境变量:

exportSPARK_SUBMIT_OPTS="-agentlib:jdwp=transport=dt_socket,server=y,suspend=y,address=5005"

(2)  在IDEA中添加配置Debug的Remote项:-

agentlib:jdwp=transport=dt_socket,server=y,suspend=n,address=5005

(3) 以local模式提交job:

spark-submit --classorg.apache.spark.examples.JavaWordCount  --master local[*] /mnt/share/codes/JavaProjects/SparkDemo/target/SparkDemo-1.0-SNAPSHOT-jar-with-dependencies.jar

(4) 在IDEA中使用(2)中的配置进行Debug,附加参考链接

示例

 一个典型的SparkConf的取值示例如下

"spark.app.id"->"local-1559438023886"

"spark.master"->"local[*]"

"spark.driver.port"->"43433"

"spark.executor.id"->"driver"

"spark.app.name"->"Java Spark SQL basic example"

"spark.submit.deployMode"->"client"

"spark.some.config.option"->"some-value"

"spark.jars"->"file:/mnt/share/codes/JavaProjects/SparkDemo/target/SparkDemo-1.0-SNAPSHOT-jar-with-dependencies.jar"

"spark.driver.host"->"gitserver"

读写外部数据源(JDBC)

Dataset<Row> jdbcDF = spark.read().format("jdbc").option("driver","com.mysql.cj.jdbc.Driver").option("url","jdbc:mysql://XXX:3306/XXX?useSSL=false&serverTimezone=UTC").option("dbtable","project_branches").option("user","XX").option("password","XXX").load();

最新版本Spark不支持com.mysql.jdbc.Driver ,将mysql8.0版本通过com.mysql.cj.jdbc.Driver进行替代

Properties connectionProperties = new Properties();

connectionProperties.put("user","XXXX");

connectionProperties.put("password","XXXXX");

//connectionProperties.put("driver","com.mysql.cj.jdbc.Driver");//这种方法中driver配置不一定得写进来Dataset<Row> jdbcDF2 = spark.read().jdbc("jdbc:mysql://XXX:3306/tspark?useSSL=false&serverTimezone=UTC","project_branches", connectionProperties);

保存数据到JDBC

jdbcDF.write().mode(SaveMode.Append).format("jdbc").option("driver","com.mysql.cj.jdbc.Driver").option("url","jdbc:mysql://XXX:3306/tspark?useSSL=false&serverTimezone=UTC").option("dbtable","project_branches_backup").option("user","XXXX").option("password","XXXX").save();

jdbcDF2.write().mode(SaveMode.Append).jdbc("jdbc:mysql://XXX:3306/tspark?useSSL=false&serverTimezone=UTC","project_branches_backup1", connectionProperties);

加载JDBC驱动异常信息

Exceptionin thread "main" java.sql.SQLException: No suitable driveratjava.sql.DriverManager.getDriver(DriverManager.java:315)atorg.apache.spark.sql.execution.datasources.jdbc.JDBCOptions.$anonfun$driverClass$2(JDBCOptions.scala:105)atscala.Option.getOrElse(Option.scala:138)atorg.apache.spark.sql.execution.datasources.jdbc.JDBCOptions.<init>(JDBCOptions.scala:105)atorg.apache.spark.sql.execution.datasources.jdbc.JDBCOptions.<init>(JDBCOptions.scala:35)atorg.apache.spark.sql.execution.datasources.jdbc.JdbcRelationProvider.createRelation(JdbcRelationProvider.scala:32)atorg.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:318)atorg.apache.spark.sql.DataFrameReader.loadV1Source(DataFrameReader.scala:223)atorg.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:211)atorg.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:167)atorg.apache.spark.examples.sql.JavaSQLDataSourceExample.runJdbcDatasetExample(JavaSQLDataSourceExample.java:299)atorg.apache.spark.examples.sql.JavaSQLDataSourceExample.main(JavaSQLDataSourceExample.java:120)atsun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)atsun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)atsun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)atjava.lang.reflect.Method.invoke(Method.java:498)atorg.apache.spark.deploy.JavaMainApplication.start(SparkApplication.scala:52)atorg.apache.spark.deploy.SparkSubmit.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:849)atorg.apache.spark.deploy.SparkSubmit.doRunMain$1(SparkSubmit.scala:167)atorg.apache.spark.deploy.SparkSubmit.submit(SparkSubmit.scala:195)atorg.apache.spark.deploy.SparkSubmit.doSubmit(SparkSubmit.scala:86)atorg.apache.spark.deploy.SparkSubmit$$anon$2.doSubmit(SparkSubmit.scala:924)atorg.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:933)atorg.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)

解决

步骤1:修改驱动为com.mysql.cj.jdbc.Driver

.format("jdbc").option("driver","com.mysql.cj.jdbc.Driver").option("url","jdbc:mysql://XXX:3306/XX?useSSL=false&serverTimezone=UTC")

步骤2:在代码中指明driver对应的jar包(mysql-connector-java-8.0.11.jar)所在路径:

--driver-class-path./spark-2.4.2-bin-hadoop2.7/jars/mysql-connector-java-8.0.11.jar

由于该jar包本身在$SPARK_HOME/jars目录下,所以无需(2)中显示指定也会正常加载),对于不在的,需要通过--driver-class-path指定

集成kafka异常信息

Exceptioninthread"main"org.apache.spark.sql.AnalysisException: Failed to find data source: kafka. Please deploy the applicationasper the deployment sectionof"Structured Streaming + Kafka Integration Guide".;

解决

缺少spark-sql-kafka-0-10_2.11-2.4.0.jar包导致,mvn找到该包,然后下载到$SPARK_HOME/jars目录下

缺少kafka-client包异常信息

Exceptioninthread"main"java.lang.NoClassDefFoundError: org/apache/kafka/common/serialization/ByteArrayDeserializer

解决

缺client包,执行cp -f ./kafka-clients-2.2.0-cp2.jar $SPARK_HOME/jars

©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

  • 1. Overview: Structured Streaming是基于Spark SQL引擎的可扩展、具有容错性...
    奉先阅读 8,028评论 0 1
  • pyspark.sql模块 模块上下文 Spark SQL和DataFrames的重要类: pyspark.sql...
    mpro阅读 13,233评论 0 13
  • Spark学习笔记 Data Source->Kafka->Spark Streaming->Parquet->S...
    哎哟喂喽阅读 11,705评论 0 51
  • 第一步去:spark.apache.org官网去选择适合自己的版本下载安装包 第二步:解压tgz文件,配置SPAR...
    机灵鬼鬼阅读 9,843评论 0 0
  • 无论是“佚名”的“佚”,还是“轶事”的“轶”,总会让人联想到 “逸名”“逸事”,其中有一股傲然的遗世独立之气...
    陆沉__阅读 1,355评论 0 1

友情链接更多精彩内容