ROS-Navigation相关知识

写在前面

我在CSDN上写了一套关于ros基础的图文教程,欢迎关注!!!


navigation stack

如图所示,关键包是中间的白框move_base
其中具体包括:全局路径规划,局部路径规划,全局代价地图,局部代价地图以及恢复行为
输入:

  1. /tf 相关传感器与base_frame的
  2. odom 和 sensor(激光雷达,深度相机) 实时数据
  3. /map

输出:对应的速度到控制器模块


关键包的数据流图

1. 关键包move_base详解

image.png

move_base要运行起来,需要选择好三种插件:base_local_planner、base_global_planner和recovery_behavior,这三种插件都得指定,否则系统会指定默认值。

如下为系统默认提供的插件:

  1. base_local_planner插件:
  • base_local_planner: 实现了Trajectory Rollout和DWA两种局部规划算法
  • dwa_local_planner: 实现了DWA局部规划算法,可以看作是base_local_planner的改进版本
  1. base_global_planner插件:
  • parrot_planner: 实现了较简单的全局规划算法
  • navfn: 实现了Dijkstra和A*全局规划算法
  • global_planner: 重新实现了Dijkstra和A*全局规划算法,可以看作navfn的改进版
  1. recovery_behavior插件:
  • clear_costmap_recovery: 实现了清除代价地图的恢复行为
  • rotate_recovery: 实现了旋转的恢复行为
  • move_slow_and_clear: 实现了缓慢移动的恢复行为

除了以上三个需要指定的插件外,还有一个costmap插件,该插件默认已经选择好,无法更改。
以上所有的插件都是继承于nav_core里的接口,nav_core属于一个接口package,它只定义了三种插件的规范,也可以说定义了三种接口类,然后分别由以上的插件来继承和实现这些接口。因此如果你要研究路径规划算法,不妨研究一下nav_core定义的路径规划工作流程,然后仿照dwa_local_planner或其他插件来实现。

2. costmap详解

  1. 本质上也是个插件:一个C++的动态链接库,在调用move_base过程中动态调用其中相关函数。
  2. costmap特点:
    1. 首先,代价地图有两张,一张是local_costmap,一张是global_costmap,分别用于局部路径规划器和全局路径规划器,而这两个costmap都默认并且只能选择costmap_2d作为插件。
    2. 无论是local_costmap还是global_costmap,都可以配置他们的Layer,可以选择多个层次。costmap的Layer包括以下几种:
  • Static Map Layer:静态地图层,通常都是SLAM建立完成的静态地图。
  • Obstacle Map Layer:障碍地图层,用于动态的记录传感器感知到的障碍物信息。
  • Inflation Layer:膨胀层,在以上两层地图上进行膨胀(向外扩张),以避免机器人的外壳会撞上障碍物。
  • Other Layers:你还可以通过插件的形式自己实现costmap,目前已有Social Costmap Layer、Range Sensor Layer等开源插件。
  1. 参数服务器配置
    与move_base插件的配置类似,costmap配置也同样用yaml 来保存,其本质是维护在参数服务器上。由于costmap通常分为local和global的coastmap,我们习惯把两个代价地图分开。

3. map_Server详解

首先,从下图可知,mapserver是和参数服务器一样,单独拎出来放在package目录下。它是一个和地图相关的功能包,它可以将已知地图发布出来,供导航和其他功能使用,也可以保存SLAM建立的地图。


某个package目录中的map

map服务器下的.yaml文件,大致规范如下:

image: Software_Museum.pgm  #指定地图文件
resolution: 0.050000    #地图的分辨率 单位为m/pixel
origin: [-25.000000, -25.000000, 0.000000]   #地图的原点
negate: 0    #0代表 白色为空闲 黑色为占据
occupied_thresh: 0.65  #当占据的概率大于0.65认为被占据
free_thresh: 0.196     #当占据的概率小于0.196认为无障碍

占据概率的计算方法:
occ = (255-color_avg)/255.0, color_avg为RGB三个通道的平均值
相关命令如下:


map服务器相关命令

4. AMCL详解

Adaptive Mentcarto Localization(AMCL),蒙特卡洛自适应定位是一种很常用的定位算法,它通过比较检测到的障碍物和已知地图来进行定位。


架构图

AMCL上的通信架构如上图所示,与之前SLAM的框架很像,最主要的区别是/map作为了输入,而不是输出,因为AMCL算法只负责定位,而不管建图。

AMCl定位会对里程计误差进行修正,修正的方法是把里程计误差加到map_frame和odom_frame之间,而odom_frame和base_frame之间是里程计的测量值,这个测量值并不会被修正。这一工程实现与之前gmapping、karto的做法是相同的。

具体做法图例

备注:航位推测法(英语:Dead reckoning,缩写:DR)是一种利用现在物体位置及速度推定未来位置方向的航海技术,现已应用至许多交通技术层面,但容易受到误差累积的影响。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,616评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,020评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,078评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,040评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,154评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,265评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,298评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,072评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,491评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,795评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,970评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,654评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,272评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,985评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,815评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,852评论 2 351

推荐阅读更多精彩内容