递归法

设一个未知函数f,用其自身构成的已知函数g来定义:
f(n)=g(n ,f(n-1))      n>0
f(0)=a                     n=0
       为了定义f(n),必须先定义f(n-1),为了定义f(n-1),又必须先定义f(n-2)··· ···,上述这种用自身的简单情况来定义自己的方式称为递归定义。
       一个递归定义必须是有确切含义的,也就是说,必须一步比一步简单,最后是有终结的,决不能无限循环下去。在f(n)的定义中,当n为0时定义一个已知数a,是最简单的情况,称为递归边界,它本身不再使用递归的定义。
       与递推一样,每一个递归定义都有其边界条件。但不同的是,递推是由边界条件出发,通过递推式求f(n)的值,从边界到求解的全过程十分清楚;而递归则是从函数自身出发来达到边界条件。在通往边界条件的递归调用过程中,系统用堆栈把每次调用的中间结果(局部变量和返回地址值)保存起来,直至求出递归边界值f(0)=a。然后返回调用函数。返回过程中,中间结果相继栈恢复,f(1) = g(1 ,a) —> f(2) = g(2, f(1)) —> ··· —>直至求出f(n) = g(n , f(n - 1))。

递归按其调用方式分:

  • 直接递归 — 递归过程P直接自己调用自己;
  • 间接递归 — 即P包含另一过程D,而D又调用P;

递归算法适用的一般场合为:

  1. 数据的定义形式按递归定义。
    如裴波那契数列的定义: fn=fn-1 + fn-2; f0=1; f1=2。
    对应的递归程序实现为:
public class FibonacciImpl {
    public static void main(String[] args) {
        final int n = 10;
        for (int i = 0; i < n; i++ ){
            System.out.print(fibonacci(i) + " ");
        }
    }

    private static int fibonacci(int n) {
        if (n == 0) {
            return 1;
        }
        if (n == 1) {
            return 2;
        }
        return (fibonacci(n - 2) + fibonacci(n - 1));
    }
}

结果为:

1 2 3 5 8 13 21 34 55 89 
  1. 数据之间的关系(即数据结构)按递归定义。如树的遍历,图的搜索等。
  2. 问题解法按递归算法实现。例如回溯法等。

对于2,3,可利用堆栈结构将其转换为非递归算法。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,053评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,527评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,779评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,685评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,699评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,609评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,989评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,654评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,890评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,634评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,716评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,394评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,976评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,950评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,191评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,849评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,458评论 2 342

推荐阅读更多精彩内容