参考资料:
《java并发编程的艺术》作者:方鹏飞 魏鹏 程晓明
https://blog.csdn.net/noble510520/article/details/78834224
https://www.jianshu.com/p/d515838f7df5
在多线程并发编程中synchronized一直是元老级角色,很多人都会称呼它为重量级锁。但是,随着Java SE 1.6对synchronized进行了各种优化之后,有些情况下它就并不那么重了。
锁的升级与对比
Java SE 1.6为了减少获得锁和释放锁带来的性能消耗,引入了“偏向锁”和“轻量级锁”,在Java SE 1.6中,锁一共有4种状态,级别从低到高依次是:无锁状态、偏向锁状态、轻量级锁状态和重量级锁状态,这几个状态会随着竞争情况逐渐升级。锁可以升级但不能降级,意味着偏向锁升级成轻量级锁后不能降级成偏向锁。这种锁升级却不能降级的策略,目的是为了提高获得锁和释放锁的效率,下文会详细分析。
介绍MarkWord
因为偏向锁,锁住对象时,会写入对象头相应的标识,我们先把对象头(官方叫法为:Mark Word)的图示如下:
1.偏向锁
HotSpot 的作者经过研究发现,大多数情况下,锁不仅不存在多线程竞争,而且总是由同一线程多次获得,为了让线程获得锁的代价更低而引入了偏向锁。当一个线程访问同步块并获取锁时,会在对象头和栈帧中的锁记录里存储锁偏向的线程ID,以后该线程在进入和退出同步块时不需要进行CAS操作来加锁和解锁,只需简单地测试一下对象头的Mark Word里是否存储着指向当前线程的偏向锁。如果测试成功,表示线程已经获得了锁。如果测试失败,则需要再测试一下Mark Word中偏向锁的标识是否设置成1(表示当前是偏向锁):如果没有设置,则使用CAS竞争锁;如果设置了,则尝试使用CAS将对象头的偏向锁指向当前线程。
偏向锁的实现
①偏向锁获取过程:
访问Mark Word中偏向锁的标识是否设置成1,锁标志位是否为01,确认为可偏向状态。
如果为可偏向状态,则测试线程ID是否指向当前线程,如果是,进入步骤5,否则进入步骤3。
如果线程ID并未指向当前线程,则通过CAS操作竞争锁。如果竞争成功,则将Mark Word中线程ID设置为当前线程ID,然后执行5;如果竞争失败,执行4。
如果CAS获取偏向锁失败,则表示有竞争。当到达全局安全点(safepoint)(在这个时间点上没有字节码正在执行)时获得偏向锁的线程被挂起,偏向锁升级为轻量级锁,然后被阻塞在安全点的线程继续往下执行同步代码。(撤销偏向锁的时候会导致stop the word)
执行同步代码。
如下图所示(图来自Java并发编程的艺术)
②偏向锁的释放:
偏向锁的撤销在上述第四步骤中有提到。偏向锁只有遇到其他线程尝试竞争偏向锁时,持有偏向锁的线程才会释放锁,线程不会主动去释放偏向锁。偏向锁的撤销,需要等待全局安全点(在这个时间点上没有字节码正在执行),它会首先暂停拥有偏向锁的线程,判断锁对象是否处于被锁定状态,撤销偏向锁后恢复到未锁定(标志位为“01”)或轻量级锁(标志位为“00”)的状态。
2.轻量级锁
轻量级锁是由偏向所升级来的,偏向锁运行在一个线程进入同步块的情况下,当第二个线程加入锁争用的时候,偏向锁就会升级为轻量级锁;
轻量级锁的加锁过程:
1.在代码进入同步块的时候,如果同步对象锁状态为无锁状态(锁标志位为“01”状态,是否为偏向锁为“0”),虚拟机首先将在当前线程的栈帧中建立一个名为锁记录(Lock Record)的空间,用于存储锁对象目前的Mark Word的拷贝,官方称之为 Displaced Mark Word。这时候线程堆栈与对象头的状态如图:
2.拷贝对象头中的Mark Word复制到锁记录中;
3.拷贝成功后,虚拟机将使用CAS操作尝试将对象的Mark Word更新为指向Lock Record的指针,并将Lock record里的owner指针指向object mark word。如果更新成功,则执行步骤4,否则执行步骤5。
4.如果这个更新动作成功了,那么这个线程就拥有了该对象的锁,并且对象Mark Word的锁标志位设置为“00”,即表示此对象处于轻量级锁定状态,这时候线程堆栈与对象头的状态如图所示。
5.如果这个更新操作失败了,虚拟机首先会检查对象的Mark Word是否指向当前线程的栈帧,如果是就说明当前线程已经拥有了这个对象的锁,那就可以直接进入同步块继续执行。否则说明多个线程竞争锁,轻量级锁就要膨胀为重量级锁,锁标志的状态值变为“10”,Mark Word中存储的就是指向重量级锁(互斥量)的指针,后面等待锁的线程也要进入阻塞状态。 而当前线程便尝试使用自旋来获取锁,自旋就是为了不让线程阻塞,而采用循环去获取锁的过程。
轻量级锁解锁:
轻量级解锁时,会使用原子的 CAS 操作来将Displaced Mark Word替换回到对象头,如果成功,则表示没有竞争发生。如果失败,表示当前锁存在竞争,锁就会膨胀成重量级锁。
为了更好的理解,我们举个例子:
当获取到锁的线程执行同步体之内的代码的时候,另一个线程也完成了上面创建锁记录空间,将对象头中的MarkWord复制到自己的锁记录中,尝试用CAS将对象头中的MarkWord修改为指向自己的锁记录的指针,但是由于之前获取到锁的线程已经将MarkWord中的记录修改过了(并且现在还在执行同步体中的代码),与这个现在试图将MarkWord替换为自己的锁记录的线程自己的锁记录中的MarkWord的值不符,CAS操作失败,因此这个线程就会不停地循环使用CAS操作试图将MarkWord替换为自己的记录。这个循环是有次数限制的,如果在循环结束之前CAS操作成功,那么该线程就可以成功获取到锁,如果循环结束之后依然获取不到锁,则锁获取失败,MarkWord中的记录会被修改为指向重量级锁的指针,然后这个获取锁失败的线程就会被挂起,阻塞了。
当持有锁的那个线程执行完同步体之后想用CAS操作将MarkWord中的记录改回它自己的栈中最开始复制的记录的时候会发现MarkWord已被修改为指向重量级锁的指针,因此CAS操作失败,该线程会释放锁并唤起阻塞等待的线程,开始新一轮夺锁之争,而此时,轻量级锁已经膨胀为重量级锁,所有竞争失败的线程都会阻塞,而不是自旋。
轻量级锁一旦膨胀为重量级锁,则不可逆转。因为轻量级锁状态下,自旋是会消耗cpu的,但是锁一旦膨胀,说明竞争激烈,大量线程都做无谓的自旋对cpu是一个极大的浪费。