1175 Prime Arrangements 质数排列
Description:
Return the number of permutations of 1 to n so that prime numbers are at prime indices (1-indexed.)
(Recall that an integer is prime if and only if it is greater than 1, and cannot be written as a product of two positive integers both smaller than it.)
Since the answer may be large, return the answer modulo 10^9 + 7.
Example:
Example 1:
Input: n = 5
Output: 12
Explanation: For example [1,2,5,4,3] is a valid permutation, but [5,2,3,4,1] is not because the prime number 5 is at index 1.
Example 2:
Input: n = 100
Output: 682289015
Constraints:
1 <= n <= 100
题目描述:
请你帮忙给从 1 到 n 的数设计排列方案,使得所有的「质数」都应该被放在「质数索引」(索引从 1 开始)上;你需要返回可能的方案总数。
让我们一起来回顾一下「质数」:质数一定是大于 1 的,并且不能用两个小于它的正整数的乘积来表示。
由于答案可能会很大,所以请你返回答案 模 mod 10^9 + 7 之后的结果即可。
示例 :
示例 1:
输入:n = 5
输出:12
解释:举个例子,[1,2,5,4,3] 是一个有效的排列,但 [5,2,3,4,1] 不是,因为在第二种情况里质数 5 被错误地放在索引为 1 的位置上。
示例 2:
输入:n = 100
输出:682289015
提示:
1 <= n <= 100
思路:
题意是要把质数放在质数位置(下标)上, 非质数放在非质数位置上
- 打表法, 因为 n <= 100, 直接计算出来查表
时间复杂度O(1), 空间复杂度O(1) - 参考LeetCode #204 Count Primes 计数质数, 先计算出来小于 n + 1的质数的个数, 分别求质数的个数的全排列数和其他的个数的全排列数的乘积, 记得要取模
时间复杂度O(n ^ 1.5), 空间复杂度O(1)
代码:
C++:
class Solution
{
public:
int numPrimeArrangements(int n)
{
int prime_count = countPrimes(n + 1);
return (int)(fac(prime_count) * fac(n - prime_count) % 1000000007);
}
private:
int countPrimes(int n)
{
if (n < 3) return 0;
int result = 0;
vector<int> prime(n);
for (int i = 2; i < n; i++)
{
if (prime[i]) continue;
else
{
++result;
for (int j = i; j < n; j += i) prime[j] = 1;
}
}
return result;
}
long fac(int n)
{
long result = 1;
for (int i = 1; i <= n; ++i) result = (result * i) % 1000000007;
return result;
}
};
Java:
class Solution {
public int numPrimeArrangements(int n) {
int prime_count = countPrimes(n + 1);
return (int)(fac(prime_count) * fac(n - prime_count) % 1000000007);
}
private int countPrimes(int n) {
if (n < 3) return 0;
int result = 0, prime[] = new int[n];
for (int i = 2; i < n; i++)
{
if (prime[i] == 1) continue;
else
{
++result;
for (int j = i; j < n; j += i) prime[j] = 1;
}
}
return result;
}
private long fac(int n) {
long result = 1;
for (int i = 1; i <= n; ++i) result = (result * i) % 1000000007;
return result;
}
}
Python:
class Solution:
def numPrimeArrangements(self, n: int) -> int:
return [1, 1, 1, 2, 4, 12, 36, 144, 576, 2880, 17280, 86400, 604800, 3628800, 29030400, 261273600, 612735986, 289151874, 180670593, 445364737, 344376809, 476898489, 676578804, 89209194, 338137903, 410206413, 973508979, 523161503, 940068494, 400684877, 13697484, 150672324, 164118783, 610613205, 44103617, 58486801, 462170018, 546040181, 197044608, 320204381, 965722612, 554393872, 77422176, 83910457, 517313696, 36724464, 175182841, 627742601, 715505693, 327193394, 451768713, 263673556, 755921509, 94744060, 600274259, 410695940, 427837488, 541336889, 736149184, 514536044, 125049738, 250895270, 39391803, 772631128, 541031643, 428487046, 567378068, 780183222, 228977612, 448880523, 892906519, 858130261, 622773264, 78238453, 146637981, 918450925, 514800525, 828829204, 243264299, 351814543, 405243354, 909357725, 561463122, 913651722, 732754657, 430788419, 139670208, 938893256, 28061213, 673469112, 448961084, 80392418, 466684389, 201222617, 85583092, 76399490, 500763245, 519081041, 892915734, 75763854, 682289015][n]