elasticsearch-倒排索引原理

(转载自CSDN 豆不女 https://blog.csdn.net/chuan442616909/article/details/55100757?utm_source=blogxgwz0)

倒排索引

Elasticsearch 使用一种称为倒排索引的结构,它适用于快速的全文搜索。一个倒排索引由文档中所有不重复词的列表构成,对于其中每个词,有一个包含它的文档列表。

es使用称为倒排索引的结构达到快速全文搜索的目的。

一个倒排索引包含一系列不同的单词,这些单词出现在任何一个文档,

对于每个单词,对应着所有它出现的文档

倒排索引建立的是分词(Term)和文档(Document)之间的映射关系,在倒排索引中,数据是面向词(Term)而不是面向文档的。


term和Doc之间呈现的关系

例如,假设我们有两个文档,每个文档的content域包含如下内容:

The quick brown fox jumped over the lazy dog

Quick brown foxes leap over lazy dogs in summer

为了创建倒排索引,我们首先将每个文档的content域拆分成单独的 词(我们称它为词条或tokens),创建一个包含所有不重复词条的排序列表,然后列出每个词条出现在哪个文档。结果如下所示:

Term      Doc_1  Doc_2

-------------------------

Quick  |      |  X

The    |  X  |

brown  |  X  |  X

dog    |  X  |

dogs    |      |  X

fox    |  X  |

foxes  |      |  X

in      |      |  X

jumped  |  X  |

lazy    |  X  |  X

leap    |      |  X

over    |  X  |  X

quick  |  X  |

summer  |      |  X

the    |  X  |

------------------------

现在,如果我们想搜索quick brown,我们只需要查找包含每个词条的文档:

Term      Doc_1  Doc_2

-------------------------

brown  |  X  |  X

quick  |  X  |

------------------------

Total  |  2  |  1

两个文档都匹配,但是第一个文档比第二个匹配度更高。如果我们使用仅计算匹配词条数量的简单相似性算法,那么,我们可以说,对于我们查询的相关性来讲,第一个文档比第二个文档更佳。

但是,我们目前的倒排索引有一些问题:

Quick和quick以独立的词条出现,然而用户可能认为它们是相同的词。

fox和foxes非常相似, 就像dog和dogs;他们有相同的词根。

jumped和leap, 尽管没有相同的词根,但他们的意思很相近。他们是同义词。

使用前面的索引搜索+Quick +fox不会得到任何匹配文档。(记住,+前缀表明这个词必须存在。)只有同时出现Quick和fox的文档才满足这个查询条件,但是第一个文档包含quick fox,第二个文档包含Quick foxes。

我们的用户可以合理的期望两个文档与查询匹配。我们可以做的更好。

如果我们将词条规范为标准模式,那么我们可以找到与用户搜索的词条不完全一致,但具有足够相关性的文档。例如:

Quick可以小写化为quick。

foxes可以词干提取--变为词根的格式-- 为fox。类似的,dogs可以为提取为dog。

jumped和leap是同义词,可以索引为相同的单词jump。

现在索引看上去像这样:

Term      Doc_1  Doc_2

-------------------------

brown  |  X  |  X

dog    |  X  |  X

fox    |  X  |  X

in      |      |  X

jump    |  X  |  X

lazy    |  X  |  X

over    |  X  |  X

quick  |  X  |  X

summer  |      |  X

the    |  X  |  X

------------------------

这还远远不够。我们搜索+Quick +fox仍然会失败,因为在我们的索引中,已经没有Quick了。但是,如果我们对搜索的字符串使用与content域相同的标准化规则,会变成查询+quick +fox,这样两个文档都会匹配!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,233评论 6 495
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,357评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,831评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,313评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,417评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,470评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,482评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,265评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,708评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,997评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,176评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,827评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,503评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,150评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,391评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,034评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,063评论 2 352