Hadoop map和reduce的个数

不同输入源下的map和reduce数量:

  • 一般情况下,在输入源是文件的时候,一个task的map数量由splitSize来决定的,那么splitSize是由以下几个来决定的
    goalSize = totalSize / mapred.map.tasks
    inSize = max {mapred.min.split.size, minSplitSize}
    splitSize = max (minSize, min(goalSize, dfs.block.size))
    一个task的reduce数量,由partition决定。

  • 在输入源是数据库的情况下,比如mysql,对于map的数量需要用户自己指定,比如
    jobconf.set(“mapred.map.tasks.nums”,20);

  • 如果数据源是HBase的话,map的数量就是该表对应的region数量。

hadoop 的并行运算

map和reduce是hadoop的核心功能,hadoop正是通过多个map和reduce的并行运行来实现任务的分布式并行计算,从这个观点来看,如果将map和reduce的数量设置为1,那么用户的任务就没有并行执行,但是map和reduce的数量也不能过多,数量过多虽然可以提高任务并行度,但是太多的map和reduce也会导致整个hadoop框架因为过度的系统资源开销而使任务失败。所以用户在提交map/reduce作业时应该在一个合理的范围内,这样既可以增强系统负载匀衡,也可以降低任务失败的开销。

1 map的数量

  • map的数量通常是由hadoop集群的HDFS块大小确定的,也就是输入文件的总块数,正常的map数量的并行规模大致是每一个Node是10~100个,对于CPU消耗较小的作业可以设置Map数量为300个左右,但是由于hadoop的每一个任务在初始化时需要一定的时间,因此比较合理的情况是每个map执行的时间至少超过1分钟。
  • 具体的数据分片是这样的,InputFormat在默认情况下会根据hadoop集群的HDFS块大小进行分片,每一个分片会由一个map任务来进行处理,当然用户还是可以通过参数mapred.min.split.size参数在作业提交客户端进行自定义设置。还有一个重要参数就是mapred.map.tasks,这个参数设置的map数量仅仅是一个提示,只有当InputFormat 决定了map任务的个数比mapred.map.tasks值小时才起作用。同样,Map任务的个数也能通过使用JobConf 的conf.setNumMapTasks(int num)方法来手动地设置。这个方法能够用来增加map任务的个数,但是不能设定任务的个数小于Hadoop系统通过分割输入数据得到的值。当然为了提高集群的并发效率,可以设置一个默认的map数量,当用户的map数量较小或者比本身自动分割的值还小时可以使用一个相对较大的默认值,从而提高整体hadoop集群的效率。
  • 我们知道InputFormat决定着InputSplit,每个InputSplit会分配给一个单独的Mapper,因此InputFormat决定了具体的Map task数量

2 reduece的数量

reduce在运行时往往需要从相关map端复制数据到reduce节点来处理,因此相比于map任务。reduce节点资源是相对比较缺少的,同时相对运行较慢,正确的reduce任务的个数应该是0.95或者1.75 *(节点数 ×mapred.tasktracker.tasks.maximum参数值)。如果任务数是节点个数的0.95倍,那么所有的reduce任务能够在 map任务的输出传输结束后同时开始运行。如果任务数是节点个数的1.75倍,那么高速的节点会在完成他们第一批reduce任务计算之后开始计算第二批 reduce任务,这样的情况更有利于负载均衡。同时需要注意增加reduce的数量虽然会增加系统的资源开销,但是可以改善负载匀衡,降低任务失败带来的负面影响。同样,Reduce任务也能够与 map任务一样,通过设定JobConf 的conf.setNumReduceTasks(int num)方法来增加任务个数。

3 reduce数量为0
有些作业不需要进行归约进行处理,那么就可以设置reduce的数量为0来进行处理,这种情况下用户的作业运行速度相对较高,map的输出会直接写入到 SetOutputPath(path)设置的输出目录,而不是作为中间结果写到本地。同时Hadoop框架在写入文件系统前并不对之进行排序。

参考文档

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,029评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,395评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,570评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,535评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,650评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,850评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,006评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,747评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,207评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,536评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,683评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,342评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,964评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,772评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,004评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,401评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,566评论 2 349

推荐阅读更多精彩内容