机器学习中类别变量的编码方法总结

姓名:韩宜真

学号:17020120095

转载自:https://mp.weixin.qq.com/s/xZWwGu78RjHWW8N5ubV20w

【嵌牛导读】本文介绍了机器学习中类别变量的编码方法。

【嵌牛鼻子】硬编码 独热编码 目标变量编码

【嵌牛提问】 类别变量的编码方法有哪些?

【嵌牛正文】

硬编码:Label Encoding

所谓硬编码,即直接对类别特征进行数值映射,有多少类别取值就映射多少数值。这种硬编码方式简单粗暴,方便快捷。但其仅在类别特征内部取值是有序的情况才好使用,即类别特征取值存在明显的顺序性,比如说学历特征取值为高中、本科、硕士和博士,各学历之间存在明显的顺序关系。

Sklearn提供了Label Encoding的实现方式,示例代码如下:

from sklearn import preprocessingle = preprocessing.LabelEncoder()le.fit(['undergraduate', 'master', 'PhD', 'Postdoc'])le.transform(['undergraduate', 'master', 'PhD', 'Postdoc'])

array([3, 2, 0, 1], dtype=int64)

独热编码:One-hot Encoding

One-hot编码应该是应用最广泛的类别特征编码方式了。假设一个类别特征有m个类别取值,通过One-hot编码我们可以将其转换为m个二元特征,每个特征对应该取值类别。

对于类别特征内部取值不存在明显的内在顺序时,即直接的硬编码不适用时,One-hot编码的作用就凸显出来了。但当类别特征取值过多时,One-hot编码很容易造成维度灾难,特别是对于文本类的特征,如果使用One-hot编码对其进行编码,基本上都是茫茫零海。

所以,在类别特征取值无序,且特征取值数量少于5个时,可使用One-hot方法进行类别编码。有朋友可能会问,一定得是5个吗,6个行不行,当然也可以,这里并没有固定标准,但差不多就是这个数据左右。数量再多就不建议使用One-hot了。

 Pandas和Sklearn都提供了One-hot编码的实现方式,示例代码如下。

import pandas as pddf = pd.DataFrame({'f1':['A','B','C'], 'f2':['Male','Female','Male']})df = pd.get_dummies(df, columns=['f1', 'f2'])df

from sklearn.preprocessing import OneHotEncoderenc = OneHotEncoder(handle_unknown='ignore')X = [['Male', 1], ['Female', 3], ['Female', 2]]enc.fit(X)enc.transform([['Female', 1], ['Male', 4]]).toarray()

array([[1., 0., 1., 0., 0.],[0., 1., 0., 0., 0.]])

目标变量编码:Target Encoding

Target Encoding就是用目标变量的类别均值来给类别特征做编码。CatBoost中就大量使用目标变量统计的方法来对类别特征编码。但在实际操作时,直接用类别均值替换类别特征的话,会造成一定程度的标签信息泄露的情况,主流方法是使用两层的交叉验证来计算目标均值。Target Encoding一般适用于类别特征无序且类别取值数量大于5个的情形。

 参考代码如下:

### 该代码来自知乎专栏:### https://zhuanlan.zhihu.com/p/40231966from sklearn.model_selection import KFoldn_folds = 20n_inner_folds = 10likelihood_encoded = pd.Series()likelihood_coding_map = {}# global prior meanoof_default_mean = train[target].mean()      kf = KFold(n_splits=n_folds, shuffle=True)oof_mean_cv = pd.DataFrame()split = 0for infold, oof in kf.split(train[feature]):print ('==============level 1 encoding..., fold %s ============' % split)inner_kf = KFold(n_splits=n_inner_folds, shuffle=True)inner_oof_default_mean = train.iloc[infold][target].mean()inner_split = 0inner_oof_mean_cv = pd.DataFrame()likelihood_encoded_cv = pd.Series()for inner_infold, inner_oof in inner_kf.split(train.iloc[infold]):print ('==============level 2 encoding..., inner fold %s ============' % inner_split)        # inner out of fold meanoof_mean = train.iloc[inner_infold].groupby(by=feature)[target].mean()        # assign oof_mean to the infoldlikelihood_encoded_cv = likelihood_encoded_cv.append(train.iloc[infold].apply(lambda x : oof_mean[x[feature]]if x[feature] in oof_mean.indexelse inner_oof_default_mean, axis = 1))inner_oof_mean_cv = inner_oof_mean_cv.join(pd.DataFrame(oof_mean), rsuffix=inner_split, how='outer')inner_oof_mean_cv.fillna(inner_oof_default_mean, inplace=True)inner_split += 1oof_mean_cv = oof_mean_cv.join(pd.DataFrame(inner_oof_mean_cv), rsuffix=split, how='outer')oof_mean_cv.fillna(value=oof_default_mean, inplace=True)split += 1print ('============final mapping...===========')likelihood_encoded = likelihood_encoded.append(train.iloc[oof].apply(lambda x: np.mean(inner_oof_mean_cv.loc[x[feature]].values)if x[feature] in inner_oof_mean_cv.indexelse oof_default_mean, axis=1))

模型自动编码

在LightGBM和CatBoost等算法中,模型可以直接对类别特征进行编码,实际使用时直接将类别特征标记后传入对应的api即可。一个示例代码如下:

lgb_train = lgb.Dataset(train2[features], train2['total_cost'],                        categorical_feature=['sex'])

总结

根据本文的梳理,可总结机器学习中类别特征的编码方式如下:

Label Encoding

类别特征内部有序

One-hot Encoding

类别特征内部无序

类别数值<5

Target Encoding

类别特征内部无序

类别数值>5

模型自动编码

LightGBM

CatBoost

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,313评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,369评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,916评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,333评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,425评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,481评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,491评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,268评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,719评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,004评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,179评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,832评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,510评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,153评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,402评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,045评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,071评论 2 352

推荐阅读更多精彩内容