图算法系列之深度优先搜索(一)

吐血整理程序员必读书单:https://github.com/silently9527/ProgrammerBooks

微信公众号:贝塔学Java

前言

在上一篇中我们把图通过邻接表数组表示出来了,这个数据结构将会做我们实现图算法的基础,本篇我们将一起开始学习图算法的第一个搜索算法 - 深度优先搜索

搜索API的定义

public class Search {
    Search(Graph graph, int s);

    boolean marked(int v);
    
    int count();
}

在开始实现算法之前,我们依然先来定义搜索的API

  1. 构造方法提供了一个图对象,以及一个起点s,需要找到与s连通的所有顶点
  2. marked判断顶点s与v是否相邻
  3. count返回与顶点s相连的总顶点数

深度优先搜索

image

假如上图是一个迷宫,我们需要从顶点0开始找到一条出路,假设我们有一条无限长的绳子,和一支粉笔,那么可以这样考虑找到出路:

  1. 先选择一条通道走,在走的路上放上一根绳子
  2. 每遇到一个路口就用笔标记一下,继续选择一条未走过的通道
  3. 当遇到一个已经被标记的路口时就退回到上一个路口继续选择一个未走过的通道
  4. 当回退的路口已经没有路可以走的时候就在继续往后回退

这种方式绳子总能帮你找到一条出路,而标记不会让你重复走已经走过的通道。

深度优先搜索的实现思路就和走迷宫的方式一样;

public class DepthFirstSearch {
    private boolean marked[]; 
    private int count;

    public DepthFirstSearch(Graph graph, int s) {
        this.marked = new boolean[graph.V()];
        this.dfs(graph, s);
    }

    private void dfs(Graph graph, int v) {
        marked[v] = true;
        count++;
        for (int w : graph.adj(v)) {
            if (!marked[w]) {
                dfs(graph, w);
            }
        }
    }

    @Override
    public boolean marked(int v) {
        return marked[v];
    }

    @Override
    public int count() {
        return count;
    }
}

在搜索一张图的时候,使用递归来遍历所有的顶点,在访问其中一个顶点时:

  1. 标记它被已经访问
  2. 递归的访问与之相连的所有邻接点

单元测试:
构建下面这张图,然后测试深度优先搜索

image
@Test
public void test() {
    Graph graph = new Graph(8); //构建一张图
    graph.addEdge(0, 1);
    graph.addEdge(0, 2);
    graph.addEdge(0, 5);
    graph.addEdge(1, 3);
    graph.addEdge(2, 4);
    graph.addEdge(4, 3);
    graph.addEdge(5, 3);
    
    graph.addEdge(6, 7); //为了展示

    SeDepthFirstSearcharch search = new DepthFirstSearch(graph, 0);
    System.out.println(search.count());
    System.out.println(search.marked(6));
    System.out.println(search.marked(7));
    System.out.println(search.marked(2));
    System.out.println(search.marked(5));
}

image

寻找路径的API

以上的递归算法只是一个开始,从上面的结果我们可以看出,我们只能判断出哪些顶点与起点s是连通的,无法给出具体的路径出来;换句话说,我们需要实现从顶点s到顶点v是否存在路径可达,如果存在请打印出来

public class Paths {
    Paths(Graph graph, int s);
    
    boolean hasPathTo(int v); //判断出从s->v是否存在路径
    
    Iterable<Integer> pathTo(int v); //如果存在路径,返回路径
}

基于深度优先搜索查找图中的可达路径

image

我们依然基于这张图来看,由于我们需要找出可达的路径,所以我们在进行搜索的时候需要记录下图中的边,这里我们使用的是一个数组edgeTo[],如果存在一条边是v->w,那么可以表示成edgeTo[w]=v,在深度搜索完成之后这个edgeTo[]数组就是一颗由父链表示的一颗树
(父链树在之前的文章中也使用过《如何检测社交网络中两个人是否是朋友关系(union-find算法)》

public class DepthFirstPaths {
    private boolean marked[];
    private int[] edgeTo;
    private int s;

    DepthFirstPaths(Graph graph, int s) {
        this.s = s;
        this.marked = new boolean[graph.V()];
        this.edgeTo = new int[graph.V()];
        this.dfs(graph, s);
    }

    private void dfs(Graph graph, int v) {
        this.marked[v] = true;
        for (int w : graph.adj(v)) {
            if (!marked[w]) {
                this.edgeTo[w] = v;
                this.dfs(graph, w);
            }
        }
    }

    public boolean hasPathTo(int v) {
        return marked[v];
    }

    public Iterable<Integer> pathTo(int v) {
        if (!hasPathTo(v)) {
            throw new IllegalStateException("s不能到达v");
        }
        Stack<Integer> stack = new LinkedListStack<>();
        stack.push(v);
        while (edgeTo[v] != s) {
            stack.push(edgeTo[v]);
            v = edgeTo[v];
        }
        stack.push(s);
        return stack;
    }
}

画图来详细跟踪深度优先搜索的运行轨迹,记录了edgeTo的变化以及父链树的逐渐形成

image
image
image

最终父链树形成了,接下来我们来写单元测试校验下生成的父链树和实际的运行结果是否一致

@Test
public void test() {
    Graph graph = new Graph(8);
    graph.addEdge(0, 1);
    graph.addEdge(0, 2);
    graph.addEdge(0, 5);
    graph.addEdge(1, 3);
    graph.addEdge(2, 4);
    graph.addEdge(4, 3);
    graph.addEdge(5, 3);
    graph.addEdge(6, 7);

    DepthFirstPaths paths = new DepthFirstPaths(graph, 0);
    System.out.println(paths.hasPathTo(5));
    System.out.println(paths.hasPathTo(2));
    System.out.println(paths.hasPathTo(6));

    paths.pathTo(5).forEach(System.out::print);
    System.out.println();
    paths.pathTo(4).forEach(System.out::print);
    System.out.println();
    paths.pathTo(2).forEach(System.out::print);


}

验证结果完全匹配了父链树

image

文中所有源码已放入到了github仓库:
https://github.com/silently9527/JavaCore

最后(点关注,不迷路)

文中或许会存在或多或少的不足、错误之处,有建议或者意见也非常欢迎大家在评论交流。

最后,写作不易,请不要白嫖我哟,希望朋友们可以点赞评论关注三连,因为这些就是我分享的全部动力来源🙏

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,951评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,606评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,601评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,478评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,565评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,587评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,590评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,337评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,785评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,096评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,273评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,935评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,578评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,199评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,440评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,163评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,133评论 2 352

推荐阅读更多精彩内容