面试算法:查找重合链表的首个相交节点

更详细的讲解和代码调试演示过程,请参看视频
如何进入google,算法面试技能全面提升指南

给定两个单向链表,这两个链表有可能会有重叠,情况如下:

这里写图片描述

两个单向链表从节点5开始重合,要求给定一个空间复杂度为O(1)的算法,返回两个链表相交时的第一个节点。依据上图,也就是返回节点5.

首先我们需要做的是,确保给定的两个单向链表,他们是相交的。这个很好确定,只要从头遍历两个链表,如果他们的尾节点是一样的话,那么这两个链表就是相交的,问题是,如何尽快找到他们相交的第一个节点。

最笨的办法是,先找到尾节点,然后去掉尾节点,然后再次遍历查找新的尾节点,然后再去掉,直到两个链表没有共同的尾节点,那么最后去掉的共同尾巴节点,则是两个链表的首次相交节点。这种做法可行,但是算法复杂度是O(n^2)。有没有更好的办法呢?

假设第一个链表,从头结点到首次相交节点,所经历的距离用T1来表示,根据上图例子,T1 = 5, 也就是第一个队列从头结点0开始,需要经历节点1,2,3,4也就是总共5个节点后才能到达节点5.

我们用T3 表示队列2从头节点开始,到达首次相交节点的距离。根据上图,T3 = 3.

我们用T2表示两队列相交部分的节点数.依据上图T2 = 5.

由此队列1的长度为: T1 + T2 (1)
队列2的长度为:T3 + T2 (2)

如果我们能算出T3的数值,那么我们从队列2的头结点出发,经过T3-1步后,就能达到首次相交节点。我们如何计算T3的数值呢?

对T3的计算,需要一个小技巧.我们把队列2进行反转,得到下面情形:

这里写图片描述

如果此时我们从队列1的头结点开始进行遍历,那么从上头的节点0开始出发,会到队列2的头结点0结束。这样,在反转后,如果再次从头遍历队列1的话,得到的长度就是:

T1 + T3 + 1 (3).

根据上面三个公式,我们便可以计算出T3来。

(3) - (1) = T1 + T3 + 1 - T1 - T2 = T3 - T2 + 1
(3) - (1) + (2) = T3 - T2 + 1 + T3 + T2 = 2*T3 + 1

由此,我们可以反解出T3, 有了T3,我们便可以得到两队列首次相交节点了。

这个算法除了需要遍历两个队列外,还需要对其中一个队列进行反转,无论是遍历还是反转,其算法复杂度都是O(n), 因此总算法复杂度是O(n).

代码实现:


public class ListIntersetChecker {
    private Node listHead1;
    private Node listHead2;
    private int firstListLen = 0;  //t1 + t2
    private int secondListLen = 0; // t3 + t2
    private int lenAfterReverse = 0; // t1 + t3
    private ListReverse listReverse = null;
    
    public ListIntersetChecker(Node listHead1, Node listHead2) {
        this.listHead1 = listHead1;
        this.listHead2 = listHead2;
        
    }
    
    public Node getFirstIntersetNode() {
        if (isTwoListInterset() == false) {
            return null;
        }
        
        listReverse = new ListReverse(listHead2);
        
        Node reverseHead = listReverse.getReverseList();
        lenAfterReverse = getListLen(listHead1);
        
        int t3 = ((lenAfterReverse - firstListLen) + secondListLen - 1) / 2;
        int steps = secondListLen - t3 - 1;
        while (steps > 0) {
            reverseHead = reverseHead.next;
            steps--;
        }
        
        return reverseHead;
    }
    
    private int getListLen(Node head) {
        int len = 0;
        while (head != null) {
            head = head.next;
            len++;
        }
        
        return len;
    }
    
    private boolean isTwoListInterset() {
        Node head1 = listHead1;
        Node head2 = listHead2;
        
        while (head1.next != null || head2.next != null) {
            if (head1.next != null) {
                head1 = head1.next;
                firstListLen++; 
            }
            
            if (head2.next != null) {
                head2 = head2.next;
                secondListLen++;
            }
            
        }
        
        firstListLen++;
        secondListLen++;
        
        return head1 == head2;
    }
    
    
}

ListIntersetCheck.java 用于实现上面描述的算法。 getFirstIntersetNode返回两重叠队列首次相交节点。isTwoListInterset 用于判断两队列是否相交。在遍历两队列时,统计两队列的长度,也就是获得 T1 + T2 以及 T3 + T2的值。

然后把队列2进行反转,反转后,再从队列1的头节点进行遍历,得到的lenAfterReverse就是 T1 + T3 + 1.

int t3 = ((lenAfterReverse - firstListLen) + secondListLen - 1) / 2;
上面语句则根据前面的推导计算出T3.

由于队列2已经反转了,所以不能从队列2的头结点去遍历,只能从队列2的尾节点开始遍历,如果头结点开始遍历需要T3步的话,那么从尾节点遍历,则需要steps = secondListLen - (T3 + 1) 步。

由此,代码从队列2反转后的头结点开始,经过steps个节点后抵达两队列首次相交时的节点。

再看看主入口代码:


public class LinkList {
    public static void main(String[] args) {
        ListUtility util1 = new ListUtility();
        ListUtility util2 = new ListUtility();
        
        Node list1 = util1.createList(10);
        Node list2 = util2.createList(3);
        
        Node node = util1.getNodeByIdx(5);
        Node tail = util2.getNodeByIdx(2);
        tail.next = node;
        
        ListIntersetChecker intersetChecker = new ListIntersetChecker(list1, list2);
        Node interset = intersetChecker.getFirstIntersetNode();
        System.out.println("The first interset node is : " + interset.val);
    }
}

程序启动时,先构造两个队列,队列1节点从0到9,队列2从0到2,然后把队列2的尾节点的next指向队列1的编号为5的节点,于是就构造了我们例子图中的两个相交队列,然后再利用ListIntersetChecker获得两重合队列的首个相交节点。

最后程序运行结果为:
The first interset node is : 5
结果跟我们理论推导一致,也就是说,我们的说法实现是正确的。更详细的代码讲解和推导调试过程,请参看视频。

更多技术信息,包括操作系统,编译器,面试算法,机器学习,人工智能,请关照我的公众号:


这里写图片描述
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 194,319评论 5 459
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 81,801评论 2 371
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 141,567评论 0 319
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,156评论 1 263
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,019评论 4 355
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,090评论 1 272
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,500评论 3 381
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,192评论 0 253
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,474评论 1 290
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,566评论 2 309
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,338评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,212评论 3 312
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,572评论 3 298
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 28,890评论 0 17
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,169评论 1 250
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,478评论 2 341
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,661评论 2 335

推荐阅读更多精彩内容