前言

梳理统计学习相关的体系

进入统计机器学习模型部分,首先从最基础的从回归分析说起。

1.回归分析

回归分析大家相对来说都已经比较了解,本质上说是以用数据去拟合自变量与解释变量之间的线性关系。是后续各种统计学习模型的基础。本部分对此不做详细介绍,这次从最小二乘的几何意义角度去看回归分析。

Y = X’B
我们知道最终的估计满足 (y-X\hat\beta)^TX=0。所以从几何角度上看,最优估计是在空间上的正交投影

回归分析的几何解释

统计/回归分析中的的一些基本概念:

  • t 检验
  • F 检验
  • p value
  • 多重共线性

关于统计基础以及其在工作中的常用应用,可参见(##先占坑)

2.正则化处理

训练数据是有限的时候,总可以通过增加参数的方法提高模型复杂度,降低训练误差,但是其泛化能力不好。正则化即通过调整参数的取值,来平衡偏差方差的关系。

线性回归中,最直接的方法就行在loss function中添加正则化项。一般形式如下:

E(w) = \sum [f(x_i, w) - y_i]^2 + \lambda g(||w||_p)

  • 当取一范数时,即为lasso;
  • 二范数:岭回归
  • 一范数和二范数组合:弹性网络。 a||w||^2_2 + (1-a)||w||_1

一范数和二范数的几何意义区别如下(这里就不解释了):

  • lasso会将特征衰减到0
  • 岭回归大量特征系数都比较小
  • 弹性网络结合了两种方法的优点
lasso与岭回归的对比

从概率不同学派的角度来看上面的问题。
正则化的方式,是从频率学派角度来看;而贝叶斯学派视角来看,正则化其实就是引入了关于参数的先验信息。

贝叶斯学派是假定参数服从某种分布,然后根据其分布利用积分的方法将其消除掉。这一过程叫边际化。边际化的过程其实恰好是正则化/泛化的过程。

可以证明,岭回归是w满足正态分布,lasso是当w满足拉普拉斯分布时候通过最大后验概率得到的估计结果。

# code
import numpy as np
import matplotlib.pyplot as plt  
from sklearn.linear_model import Lasso,LassoCV,LassoLarsCV   # Lasso回归,LassoCV交叉验证实现alpha的选取,LassoLarsCV基于最小角回归交叉验证实现alpha的选取

# ========Lasso回归========
model = Lasso(alpha=0.01)  # 调节alpha可以实现对拟合的程度
# model = LassoCV()  # LassoCV自动调节alpha可以实现选择最佳的alpha。
# model = LassoLarsCV()  # LassoLarsCV自动调节alpha可以实现选择最佳的alpha
model.fit(X, y)   # 线性回归建模
print('系数矩阵:\n',model.coef_)
print('线性回归模型:\n',model)
# print('最佳的alpha:',model.alpha_)  # 只有在使用LassoCV、LassoLarsCV时才有效
# 使用模型预测
predicted = model.predict(X)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,463评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,868评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,213评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,666评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,759评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,725评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,716评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,484评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,928评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,233评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,393评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,073评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,718评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,308评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,538评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,338评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,260评论 2 352

推荐阅读更多精彩内容