机器学习模型LightGBM 训练及超参数搜索

注: 本文章主要以代码为主,作为个人笔记以供后序参考使用。

lightgbm 、xgboost、catboost作为常用的三大boost模型, 经常在机器学习竞赛中使用,而且效果极好。后续为了更好的提升算法的精度可能会以此作为基模型进行模型融合。本文着重讲解lightgbm的训练及后续的超参数调优,其他模型也可按照此步骤进行训练。

在开始正文之前先boost模型的复杂度如何计算及lightgbm模型较基础的boost模型做出的改进。

boost模型复杂度=特征数量*特征分裂点的数量*样本数量

lightGBM 优化点:

  1. Histogram算法: 采用Histogram直方图的算法,对于数据进行离散化和分箱操作,寻找最佳特征分裂点。计算代价和内存占用都大大减少,另一方面个叶子节点的直方图可由其父节点的直方图与其兄弟节点的直方图做差得到,这也可以加速特征节点分裂。(减少特征分裂点的数量
  2. GOSS(Gradient-based One-Side Sampling)算法:单边梯度抽样算法 ,将训练过程中大部分权重较小的样本提出(减少样本数量
  3. EFB(Exclusive Feature Bundling)算法:互斥特征捆绑算法,通过将两个互斥的特征捆绑在一起,合为一个特征。

定义lightgbm 模型并训练作为baseline

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score, classification_report, confusion_matrix

import lightgbm as lgb

import pickle as pkl

模型参数设置

param = {

        'boosting_type':'gbdt',

        'eval_metric': "auc",

        'num_leaves' : 20,

        'n_estimators': 500,

        'objective': 'multiclass',

        'learning_rate' : 0.005,

        'max_depth' : 50,

        'min_child_samples':20,

#        'feature_fraction':0.8,

#        'bagging_fraction': 0.9,

#        'bagging_freq': 8,

        'reg_alpha':0.005,

        'reg_lambda':0.17

#        'lambda_l1': 0.6,

#        'lambda_l2': 0.5

#                          'scale_pos_weight':k,

#                        'is_unbalance':True

        }

X_train, X_valid, y_train, y_valid = train_test_split(features, labels, test_size=0.2, random_state=2021) # 数据集以自己的为准,这里不作解释

lgb_model = lgb.LGBMClassifier(**param)

lgb_model.fit(X_train, y_train, eval_set =[(X_valid,y_valid)], early_stopping_rounds=800, verbose=5) # 模型训练

pred = lgb_model.predict(X_valid)

查看模型预测效果,以及对于不同类别的预测情况

print(accuracy_score(pred, y_valid))

print(classification_report(pred, y_valid))

print(confusion_matrix(pred, y_valid))

模型保存

def pickle_write(path, data):

    with open(path, "wb") as fw:

        pkl.dump(data, fw)

def pickle_read(path):

    with open(path, "rb") as fr:

        data = pkl.load(fr)

    return data

pickle_write("model/lgb_baseline.pickle", lgb_model)

# lgb_model = pickle_read("model/lgb_baseline.pickle")

网格搜索GridSearchCV

from sklearn.model_selection import GridSearchCV

import warnings

warnings.filterwarnings('ignore')



param_dist = {"learning_rate": [0.1,0.05,0.01],

              "max_depth": [50, 80, 100],

              "n_estimators": [500, 800,1000]

            }

grid_search = GridSearchCV(lgb_model, param_grid=param_dist, cv = 3, scoring="roc_auc", verbose=5)

grid_search.fit(X_train,y_train)

grid_search.best_estimator_, grid_search.best_score_

hyperopt 超参数搜索

  • 常用函数如下:

  • hp.choice(label, options)
    返回传入的列表或者数组其中的一个选项。

  • hp.randint(label, upper)
    返回范围:[0,upper]中的随机整数。

  • hp.uniform(label, low, high)
    返回位于[low,hight]之间的均匀分布的值。在优化时,这个变量被限制为一个双边区间。

  • hp.normal(label, mu, sigma)
    返回正态分布的实数值,其平均值为 mu ,标准偏差为 σ。优化时,这是一个无边界的变量。

from hyperopt import fmin, tpe, hp, partial, Trials

# 自定义hyperopt的参数空间

space = {"max_depth": hp.randint("max_depth", 15),

        "num_trees": hp.randint("num_trees", 300),

        'learning_rate': hp.uniform('learning_rate', 1e-3, 5e-1),

        "bagging_fraction": hp.randint("bagging_fraction", 5),

        "num_leaves": hp.randint("num_leaves", 6),

        }

参数解析

def argsDict_tranform(argsDict, isPrint=False):

    argsDict["max_depth"] = argsDict["max_depth"] + 5

    argsDict['num_trees'] = argsDict['num_trees'] + 150

    argsDict["learning_rate"] = argsDict["learning_rate"] * 0.02 + 0.05

    argsDict["bagging_fraction"] = argsDict["bagging_fraction"] * 0.1 + 0.5

    argsDict["num_leaves"] = argsDict["num_leaves"] * 3 + 10

    if isPrint:

        print(argsDict)

    else:

        pass

    return argsDict

模型工厂及最优模型评估输出

def lightgbm_factory(argsDict, report=False):

    argsDict = argsDict_tranform(argsDict)

    params = {

              'boosting_type':'gbdt',

              'n_estimators': 200,

              'max_depth': argsDict['max_depth'], 

              'num_trees': argsDict['num_trees'], 

              'learning_rate': argsDict['learning_rate'], 

              'bagging_fraction': argsDict['bagging_fraction'], 

              'num_leaves': argsDict['num_leaves'], 

              'objective': 'multiclass',

              'min_child_samples':20,

              'eval_metric': "auc", # 回归指标 'rmse'

#              'feature_fraction': 0.7,

#              'lambda_l1': 0.6, 

#              'lambda_l2': 0.5,

#              'bagging_seed': 100

              }

    model_lgb = lgb.LGBMClassifier(**params)

    model_lgb.fit(X_train, y_train, eval_set =[(X_valid,y_valid)], early_stopping_rounds=500, verbose=5)

    return get_tranformer_score(model_lgb,  report)

评估函数(分类和回归)

def get_tranformer_score(tranformer,  report):

    prediction = tranformer.predict(X_valid, num_iteration=tranformer.best_iteration_)
    if report:
        print(classification_report(prediction, y_valid))
        print(confusion_matrix(prediction, y_valid))
        pickle_write("model/lgb_best.pickle", tranformer)

    return -accuracy_score(y_valid, prediction)


### 此函数根据需求自行修改
def get_mse_score(tranformer):

    prediction = tranformer.predict(X_valid, num_iteration=model.best_iteration)

    return mean_squared_error(y_predict,prediction)

参数搜索:

trials = Trials()

algo = partial(tpe.suggest, n_startup_jobs=1)

best = fmin(lightgbm_factory, space, algo=algo, max_evals=20, pass_expr_memo_ctrl=None, trials=trials)

查看每次参数的loss

plt.plot(trials.losses())

# trials.statuses()

# trials.trials

选择最优参数训练:

ACC = lightgbm_factory(best, report=True)

print('best :', best)

print('best param after transform :')

argsDict_tranform(best,isPrint=True)

print('accuracy of the best lightgbm:', -ACC)

将模型转为C语言,以便后续的模型部署。

  • pip install m2cgen 安装所需库。
import m2cgen as m2c

def model_2c(model, path):
    code = m2c.export_to_c(model)
    with open(path, "w+") as fw:
        fw.write(code)
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容