使用pandas读取excel②

pd.read_excel(io, sheet_name=0, header=0, names=None, index_col=None,
usecols=None, squeeze=False,dtype=None, engine=None,
converters=None, true_values=None, false_values=None,
skiprows=None, nrows=None, na_values=None, parse_dates=False,
date_parser=None, thousands=None, comment=None, skipfooter=0,
convert_float=True, **kwds)

1、io,Excel的存储路径

2、sheet_name,要读取的工作表名称

3、header, 用哪一行作列名

4、names, 自定义最终的列名

5、index_col, 用作索引的列

6、usecols,需要读取哪些列

7、squeeze,当数据仅包含一列

8、converters ,强制规定列数据类型

9、skiprows,跳过特定行

10、nrows ,需要读取的行数

11、skipfooter , 跳过末尾n行

Excel是微软的经典之作,在日常工作中的数据整理、分析和可视化方面,有其独到的优势,尤其在你熟练应用了函数和数据透视等高级功能之后,Excel可以大幅度提高你的工作效率。但如果数据量超大,Excel的劣势也就随之而来,甚至因为内存溢出无法打开文件,后续的分析更是难上加难。那么,有什么更好的解决办法吗?工欲善其事,必先利其器,在这里我们介绍使用Python的pandas数据分析包来解决此问题。

pd.read_excel(io, sheet_name=0, header=0, names=None, index_col=None,
usecols=None, squeeze=False,dtype=None, engine=None,
converters=None, true_values=None, false_values=None,
skiprows=None, nrows=None, na_values=None, parse_dates=False,
date_parser=None, thousands=None, comment=None, skipfooter=0,
convert_float=True, **kwds)
pandas读取Excel后返回DataFrame,接下来我们就pd.read_excel()的常用参数进行详细解析。

【文中使用英超、西甲的排名积分榜及射手榜作为原始数据~~~】

1、io,Excel的存储路径
建议使用英文路径以及英文命名方式。
import pandas as pd
io = r'C:\Users\Administrator\Desktop\data.xlsx'
2、sheet_name,要读取的工作表名称
可以是整型数字、列表名或SheetN,也可以是上述三种组成的列表。
整型数字:目标sheet所在的位置,以0为起始,比如sheet_name = 1代表第2个工作表。

data = pd.read_excel(io, sheet_name = 1)
data.head()

列表名:目标sheet的名称,中英文皆可。
data = pd.read_excel(io, sheet_name = '英超射手榜')
data.head()

SheetN:代表第N个sheet,S要大写,注意与整型数字的区别。
data = pd.read_excel(io, sheet_name = 'Sheet5')
data.head()

组合列表: sheet_name = [0, '英超射手榜', 'Sheet4'],代表读取三个工作表,分别为第1个工作表、名为“英超射手榜”的工作表和第4个工作表。显然,Sheet4未经重命名。
sheet_name 默认为0,取Excel第一个工作表。如果读取多个工作表,则显示表格的字典。对于初学者而言,建议每次读取一个工作表,然后进行二次整合。
data = pd.read_excel(io, sheet_name = ['英超积分榜', '西甲积分榜'], nrows = 5)

sheet_name = ['英超积分榜', '西甲积分榜'] ,返回两个工作表组成的字典

data

3、header, 用哪一行作列名
默认为0 ,如果设置为[0,1],则表示将前两行作为多重索引。
data = pd.read_excel(io, sheet_name = '英超积分榜', header = [0,1])

前两行作为列名。

data.head()

4、names, 自定义最终的列名
一般适用于Excel缺少列名,或者需要重新定义列名的情况。
注意:names的长度必须和Excel列长度一致,否则会报错。
data = pd.read_excel(io, sheet_name = '英超射手榜',
names = ['rank','player','club','goal','common_goal','penalty'])
data.head()

5、index_col, 用作索引的列
可以是工作表列名称,如index_col = '排名';
可以是整型或整型列表,如index_col = 0 或 [0, 1],如果选择多个列,则返回多重索引。
data = pd.read_excel(io, sheet_name = '英超射手榜', index_col = '排名')
data.head()

data = pd.read_excel(io, sheet_name = '英超射手榜', index_col = [0, 1])
data.head()

6、usecols,需要读取哪些列
可以使用整型,从0开始,如[0,2,3];
可以使用Excel传统的列名“A”、“B”等字母,如“A:C, E” ="A, B, C, E",注意两边都包括。
usecols 可避免读取全量数据,而是以分析需求为导向选择特定数据,可以大幅提高效率。
data = pd.read_excel(io, sheet_name = '西甲射手榜', usecols = [0, 1, 3])
data.head()

data = pd.read_excel(io, sheet_name = '西甲射手榜', usecols = 'A:C, E')
data.head()

啊?什么!!为啥不见C罗??

大佬,C罗转会去尤文图斯啦~~~~

7、squeeze,当数据仅包含一列
squeeze为True时,返回Series,反之返回DataFrame。
data = pd.read_excel(io, sheet_name = 'squeeze', squeeze = True)
data.head()

data = pd.read_excel(io, sheet_name = 'squeeze', squeeze = False)
data.head()

8、converters ,强制规定列数据类型
converters = {'排名': str, '场次': int}, 将“排名”列数据类型强制规定为字符串(pandas默认将文本类的数据读取为整型),“场次”列强制规定为整型;

主要用途:保留以文本形式存储的数字。

data = pd.read_excel(io, sheet_name = 'converters')
data['排名'].dtype

data = pd.read_excel(io, sheet_name = 'converters', converters = {'排名': str, '场次': float})
data['排名'].dtype

9、skiprows,跳过特定行
skiprows= n, 跳过前n行; skiprows = [a, b, c],跳过第a+1,b+1,c+1行(索引从0开始);
使用skiprows 后,有可能首行(即列名)也会被跳过。
data = pd.read_excel(io, sheet_name = '英超射手榜', skiprows = [1,2,3])

跳过第2,3,4行数据(索引从0开始,包括列名)

data.head()

data = pd.read_excel(io, sheet_name = '英超射手榜', skiprows = 3)
data.head()

10、nrows ,需要读取的行数
如果只想了解Excel的列名及概况,不必读取全量数据,nrows会十分有用。
data = pd.read_excel(io, sheet_name = '英超射手榜', nrows = 10)
data

11、skipfooter , 跳过末尾n行
data = pd.read_excel(r'C:\Users\Administrator\Desktop\data.xlsx' ,
sheet_name = '英超射手榜', skipfooter = 43)

skipfooter = 43, 跳过末尾43行(索引从0开始)

data

欢迎搜索今日头条“海阔天空爱阅读”,欣赏更多文章~~
————————————————
版权声明:本文为CSDN博主「KevinHooSCUT」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_38546295/article/details/83537558

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,122评论 6 505
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,070评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,491评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,636评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,676评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,541评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,292评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,211评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,655评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,846评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,965评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,684评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,295评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,894评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,012评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,126评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,914评论 2 355

推荐阅读更多精彩内容

  • 参考:read_excel;to_excel;read_csv;to_csv 读取excel/csv数据 - re...
    悟空Oo阅读 1,947评论 0 7
  • 这个学期起初的时候对一些东西有所了解过,就跳过很多东西吧,把一些自己认为重要的做出笔记,看了昨天的那东西,截图搞得...
    六六的建斌阅读 1,063评论 0 1
  • 关键缩写和包导入 在这个速查手册中,我们使用如下缩写: df:任意的Pandas DataFrame对象s:任意的...
    惊蛰_a11a阅读 1,241评论 0 0
  • pyspark.sql模块 模块上下文 Spark SQL和DataFrames的重要类: pyspark.sql...
    mpro阅读 9,454评论 0 13
  • 参考:23种设计模式全解析(转载版) 单例模式:java应用,jvm中,该类的对象只有一个实例。 使用场景:对象需...
    jwyh阅读 97评论 0 0