10道多线程并发面试题


1. synchronized的实现原理以及锁优化?

synchronized的实现原理

  1. synchronized作用于「方法」或者「代码块」,保证被修饰的代码在同一时间只能被一个线程访问。
  2. synchronized修饰代码块时,JVM采用「monitorenter、monitorexit」两个指令来实现同步
  3. synchronized修饰同步方法时,JVM采用「ACC_SYNCHRONIZED」标记符来实现同步
  4. monitorenter、monitorexit或者ACC_SYNCHRONIZED都是「基于Monitor实现」
  5. 实例对象里有对象头,对象头里面有Mark Word,Mark Word指针指向了「monitor」
  6. Monitor其实是一种「同步工具」,也可以说是一种「同步机制」
  7. 在Java虚拟机(HotSpot)中,Monitor是由「ObjectMonitor实现」的。ObjectMonitor体现出Monitor的工作原理~

ObjectMonitor() { _header = NULL; _count = 0; // 记录线程获取锁的次数 _waiters = 0, _recursions = 0; //锁的重入次数 _object = NULL; _owner = NULL; // 指向持有ObjectMonitor对象的线程 _WaitSet = NULL; // 处于wait状态的线程,会被加入到_WaitSet _WaitSetLock = 0 ; _Responsible = NULL ; _succ = NULL ; _cxq = NULL ; FreeNext = NULL ; _EntryList = NULL ; // 处于等待锁block状态的线程,会被加入到该列表 _SpinFreq = 0 ; _SpinClock = 0 ; OwnerIsThread = 0 ; }

ObjectMonitor的几个关键属性 _count、_recursions、_owner、_WaitSet、 _EntryList 体现了monitor的工作原理

锁优化

在讨论锁优化前,先看看JAVA对象头(32位JVM)中Mark Word的结构图吧~

Mark Word存储对象自身的运行数据,如「哈希码、GC分代年龄、锁状态标志、偏向时间戳(Epoch)」 等,为什么区分「偏向锁、轻量级锁、重量级锁」等几种锁状态呢?

在JDK1.6之前,synchronized的实现直接调用ObjectMonitor的enter和exit,这种锁被称之为「重量级锁」。从JDK6开始,HotSpot虚拟机开发团队对Java中的锁进行优化,如增加了适应性自旋、锁消除、锁粗化、轻量级锁和偏向锁等优化策略。

  1. 偏向锁:在无竞争的情况下,把整个同步都消除掉,CAS操作都不做。
  2. 轻量级锁:在没有多线程竞争时,相对重量级锁,减少操作系统互斥量带来的性能消耗。但是,如果存在锁竞争,除了互斥量本身开销,还额外有CAS操作的开销。
  3. 自旋锁:减少不必要的CPU上下文切换。在轻量级锁升级为重量级锁时,就使用了自旋加锁的方式
  4. 锁粗化:将多个连续的加锁、解锁操作连接在一起,扩展成一个范围更大的锁。

举个例子,买门票进动物园。老师带一群小朋友去参观,验票员如果知道他们是个集体,就可以把他们看成一个整体(锁租化),一次性验票过,而不需要一个个找他们验票。

  1. 锁消除:虚拟机即时编译器在运行时,对一些代码上要求同步,但是被检测到不可能存在共享数据竞争的锁进行削除。

有兴趣的朋友们可以看看我这篇文章: Synchronized解析——如果你愿意一层一层剥开我的心[1]

2. ThreadLocal原理,使用注意点,应用场景有哪些?

回答四个主要点:

  1. ThreadLocal是什么?
  2. ThreadLocal原理
  3. ThreadLocal使用注意点
  4. ThreadLocal的应用场景

ThreadLocal是什么?

ThreadLocal,即线程本地变量。如果你创建了一个ThreadLocal变量,那么访问这个变量的每个线程都会有这个变量的一个本地拷贝,多个线程操作这个变量的时候,实际是操作自己本地内存里面的变量,从而起到线程隔离的作用,避免了线程安全问题。

//创建一个ThreadLocal变量 static ThreadLocal<String> localVariable = new ThreadLocal<>();

ThreadLocal原理

ThreadLocal内存结构图:

由结构图是可以看出:

  1. Thread对象中持有一个ThreadLocal.ThreadLocalMap的成员变量。
  2. ThreadLocalMap内部维护了Entry数组,每个Entry代表一个完整的对象,key是ThreadLocal本身,value是ThreadLocal的泛型值。

对照着几段关键源码来看,更容易理解一点哈~

public class Thread implements Runnable { //ThreadLocal.ThreadLocalMap是Thread的属性 ThreadLocal.ThreadLocalMap threadLocals = null; }

ThreadLocal中的关键方法set()和get()

public void set(T value) { Thread t = Thread.currentThread(); //获取当前线程t ThreadLocalMap map = getMap(t); //根据当前线程获取到ThreadLocalMap if (map != null) map.set(this, value); //K,V设置到ThreadLocalMap中 else createMap(t, value); //创建一个新的ThreadLocalMap } public T get() { Thread t = Thread.currentThread();//获取当前线程t ThreadLocalMap map = getMap(t);//根据当前线程获取到ThreadLocalMap if (map != null) { //由this(即ThreadLoca对象)得到对应的Value,即ThreadLocal的泛型值 ThreadLocalMap.Entry e = map.getEntry(this); if (e != null) { @SuppressWarnings("unchecked") T result = (T)e.value; return result; } } return setInitialValue(); }

ThreadLocalMap的Entry数组

static class ThreadLocalMap { static class Entry extends WeakReference<ThreadLocal<?>> { /** The value associated with this ThreadLocal. */ Object value; Entry(ThreadLocal<?> k, Object v) { super(k); value = v; } } }

所以怎么回答「ThreadLocal的实现原理」?如下,最好是能结合以上结构图一起说明哈~

  1. Thread类有一个类型为ThreadLocal.ThreadLocalMap的实例变量threadLocals,即每个线程都有一个属于自己的ThreadLocalMap。
  2. ThreadLocalMap内部维护着Entry数组,每个Entry代表一个完整的对象,key是ThreadLocal本身,value是ThreadLocal的泛型值。
  3. 每个线程在往ThreadLocal里设置值的时候,都是往自己的ThreadLocalMap里存,读也是以某个ThreadLocal作为引用,在自己的map里找对应的key,从而实现了线程隔离。

ThreadLocal 内存泄露问题

先看看一下的TreadLocal的引用示意图哈,

ThreadLocalMap中使用的 key 为 ThreadLocal 的弱引用,如下

弱引用:只要垃圾回收机制一运行,不管JVM的内存空间是否充足,都会回收该对象占用的内存。

弱引用比较容易被回收。因此,如果ThreadLocal(ThreadLocalMap的Key)被垃圾回收器回收了,但是因为ThreadLocalMap生命周期和Thread是一样的,它这时候如果不被回收,就会出现这种情况:ThreadLocalMap的key没了,value还在,这就会「造成了内存泄漏问题」

如何「解决内存泄漏问题」?使用完ThreadLocal后,及时调用remove()方法释放内存空间。

ThreadLocal的应用场景

  1. 数据库连接池
  2. 会话管理中使用

3. synchronized和ReentrantLock的区别?

我记得校招的时候,这道面试题出现的频率还是挺高的~可以从锁的实现、功能特点、性能等几个维度去回答这个问题,

  1. 「锁的实现:」 synchronized是Java语言的关键字,基于JVM实现。而ReentrantLock是基于JDK的API层面实现的(一般是lock()和unlock()方法配合try/finally 语句块来完成。)
  2. 「性能:」 在JDK1.6锁优化以前,synchronized的性能比ReenTrantLock差很多。但是JDK6开始,增加了适应性自旋、锁消除等,两者性能就差不多了。
  3. 「功能特点:」 ReentrantLock 比 synchronized 增加了一些高级功能,如等待可中断、可实现公平锁、可实现选择性通知。
  1. ReentrantLock提供了一种能够中断等待锁的线程的机制,通过lock.lockInterruptibly()来实现这个机制。
  2. ReentrantLock可以指定是公平锁还是非公平锁。而synchronized只能是非公平锁。所谓的公平锁就是先等待的线程先获得锁。
  3. synchronized与wait()和notify()/notifyAll()方法结合实现等待/通知机制,ReentrantLock类借助Condition接口与newCondition()方法实现。
  4. ReentrantLock需要手工声明来加锁和释放锁,一般跟finally配合释放锁。而synchronized不用手动释放锁。

4. 说说CountDownLatch与CyclicBarrier区别

  1. CountDownLatch:一个或者多个线程,等待其他多个线程完成某件事情之后才能执行;
  2. CyclicBarrier:多个线程互相等待,直到到达同一个同步点,再继续一起执行。

举个例子吧:

  1. CountDownLatch:假设老师跟同学约定周末在公园门口集合,等人齐了再发门票。那么,发门票(这个主线程),需要等各位同学都到齐(多个其他线程都完成),才能执行。
  2. CyclicBarrier:多名短跑运动员要开始田径比赛,只有等所有运动员准备好,裁判才会鸣枪开始,这时候所有的运动员才会疾步如飞。

5. Fork/Join框架的理解

Fork/Join框架是Java7提供的一个用于并行执行任务的框架,是一个把大任务分割成若干个小任务,最终汇总每个小任务结果后得到大任务结果的框架。

Fork/Join框架需要理解两个点,「分而治之」「工作窃取算法」

「分而治之」

以上Fork/Join框架的定义,就是分而治之思想的体现啦

「工作窃取算法」

把大任务拆分成小任务,放到不同队列执行,交由不同的线程分别执行时。有的线程优先把自己负责的任务执行完了,其他线程还在慢慢悠悠处理自己的任务,这时候为了充分提高效率,就需要工作盗窃算法啦~

工作盗窃算法就是,「某个线程从其他队列中窃取任务进行执行的过程」。一般就是指做得快的线程(盗窃线程)抢慢的线程的任务来做,同时为了减少锁竞争,通常使用双端队列,即快线程和慢线程各在一端。

6. 为什么我们调用start()方法时会执行run()方法,为什么我们不能直接调用run()方法?

看看Thread的start方法说明哈~

/** * Causes this thread to begin execution; the Java Virtual Machine * calls the <code>run</code> method of this thread. * <p> * The result is that two threads are running concurrently: the * current thread (which returns from the call to the * <code>start</code> method) and the other thread (which executes its * <code>run</code> method). * <p> * It is never legal to start a thread more than once. * In particular, a thread may not be restarted once it has completed * execution. * * @exception IllegalThreadStateException if the thread was already * started. * @see #run() * @see #stop() */ public synchronized void start() { ...... }

JVM执行start方法,会另起一条线程执行thread的run方法,这才起到多线程的效果~ 「为什么我们不能直接调用run()方法?」 如果直接调用Thread的run()方法,其方法还是运行在主线程中,没有起到多线程效果。

7. CAS?CAS 有什么缺陷,如何解决?

CAS,Compare and Swap,比较并交换;

CAS 涉及3个操作数,内存地址值V,预期原值A,新值B; 如果内存位置的值V与预期原A值相匹配,就更新为新值B,否则不更新

CAS有什么缺陷?

「ABA 问题」

并发环境下,假设初始条件是A,去修改数据时,发现是A就会执行修改。但是看到的虽然是A,中间可能发生了A变B,B又变回A的情况。此时A已经非彼A,数据即使成功修改,也可能有问题。

可以通过AtomicStampedReference「解决ABA问题」,它,一个带有标记的原子引用类,通过控制变量值的版本来保证CAS的正确性。

「循环时间长开销」

自旋CAS,如果一直循环执行,一直不成功,会给CPU带来非常大的执行开销。

很多时候,CAS思想体现,是有个自旋次数的,就是为了避开这个耗时问题~

「只能保证一个变量的原子操作。」

CAS 保证的是对一个变量执行操作的原子性,如果对多个变量操作时,CAS 目前无法直接保证操作的原子性的。

可以通过这两个方式解决这个问题:

  1. 使用互斥锁来保证原子性;
  2. 将多个变量封装成对象,通过AtomicReference来保证原子性。

有兴趣的朋友可以看看我之前的这篇实战文章哈~ CAS乐观锁解决并发问题的一次实践[2]

9. 如何保证多线程下i++ 结果正确?

  1. 使用循环CAS,实现i++原子操作
  2. 使用锁机制,实现i++原子操作
  3. 使用synchronized,实现i++原子操作

没有代码demo,感觉是没有灵魂的~ 如下:

/** * @Author 捡田螺的小男孩 */ public class AtomicIntegerTest { private static AtomicInteger atomicInteger = new AtomicInteger(0); public static void main(String[] args) throws InterruptedException { testIAdd(); } private static void testIAdd() throws InterruptedException { //创建线程池 ExecutorService executorService = Executors.newFixedThreadPool(2); for (int i = 0; i < 1000; i++) { executorService.execute(() -> { for (int j = 0; j < 2; j++) { //自增并返回当前值 int andIncrement = atomicInteger.incrementAndGet(); System.out.println("线程:" + Thread.currentThread().getName() + " count=" + andIncrement); } }); } executorService.shutdown(); Thread.sleep(100); System.out.println("最终结果是 :" + atomicInteger.get()); } }

运行结果:

... 线程:pool-1-thread-1 count=1997 线程:pool-1-thread-1 count=1998 线程:pool-1-thread-1 count=1999 线程:pool-1-thread-2 count=315 线程:pool-1-thread-2 count=2000 最终结果是 :2000

10. 如何检测死锁?怎么预防死锁?死锁四个必要条件

死锁是指多个线程因竞争资源而造成的一种互相等待的僵局。如图感受一下:「死锁的四个必要条件:」

  1. 互斥:一次只有一个进程可以使用一个资源。其他进程不能访问已分配给其他进程的资源。
  2. 占有且等待:当一个进程在等待分配得到其他资源时,其继续占有已分配得到的资源。
  3. 非抢占:不能强行抢占进程中已占有的资源。
  4. 循环等待:存在一个封闭的进程链,使得每个资源至少占有此链中下一个进程所需要的一个资源。

「如何预防死锁?」

  1. 加锁顺序(线程按顺序办事)
  2. 加锁时限 (线程请求所加上权限,超时就放弃,同时释放自己占有的锁)
  3. 死锁检测

参考与感谢

牛顿说,我之所以看得远,是因为我站在巨人的肩膀上~ 谢谢以下各位前辈哈~

  1. 面试必问的CAS,你懂了吗?[3]
  2. Java多线程:死锁[4]
  3. ReenTrantLock可重入锁(和synchronized的区别)总结[5]
  4. 聊聊并发(八)——Fork/Join 框架介绍[6]
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,377评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,390评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,967评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,344评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,441评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,492评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,497评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,274评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,732评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,008评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,184评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,837评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,520评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,156评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,407评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,056评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,074评论 2 352