Spark SQL(八):UDF和UDAF

UDF:User Defined Function,用户自定义函数,其实更多的是针对单行输入,返回一个输出;
UDAF:User Defined Aggregate Function,用户自定义聚合函数,
可以针对多行输入,进行聚合计算,返回一个输出,功能更加强大;
是从Spark 1.5.x开始引入的特性。

1、UDF demo

package cn.spark.study.sql

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.Row
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.types.StructField
import org.apache.spark.sql.types.StringType

object UDF {
  
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf()
        .setMaster("local") 
        .setAppName("UDF")
    val sc = new SparkContext(conf)
    val sqlContext = new SQLContext(sc)
  
    // 构造模拟数据
    val names = Array("Leo", "Marry", "Jack", "Tom") 
    val namesRDD = sc.parallelize(names, 5) 
    val namesRowRDD = namesRDD.map { name => Row(name) }
    val structType = StructType(Array(StructField("name", StringType, true)))  
    val namesDF = sqlContext.createDataFrame(namesRowRDD, structType) 
    
    // 注册一张names表
    namesDF.registerTempTable("names")  
    
    // 定义和注册自定义函数
    // 定义函数:自己写匿名函数
    // 注册函数:SQLContext.udf.register()
    sqlContext.udf.register("strLen", (str: String) => str.length()) 
  
    // 使用自定义函数
    sqlContext.sql("select name,strLen(name) from names")
        .collect()
        .foreach(println)  
  }
}

2、UDAF demo

package cn.spark.study.sql

import org.apache.spark.sql.expressions.UserDefinedAggregateFunction
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.types.DataType
import org.apache.spark.sql.expressions.MutableAggregationBuffer
import org.apache.spark.sql.Row
import org.apache.spark.sql.types.StructField
import org.apache.spark.sql.types.StringType
import org.apache.spark.sql.types.IntegerType

class StringCount extends UserDefinedAggregateFunction {  
  
  // inputSchema,指的是,输入数据的类型
  def inputSchema: StructType = {
    StructType(Array(StructField("str", StringType, true)))   
  }
  
  // bufferSchema,指的是,中间进行聚合时,所处理的数据的类型
  def bufferSchema: StructType = {
    StructType(Array(StructField("count", IntegerType, true)))   
  }
  
  // dataType,指的是,函数返回值的类型
  def dataType: DataType = {
    IntegerType
  }
  
  def deterministic: Boolean = {
    true
  }

  // 为每个分组的数据执行初始化操作
  def initialize(buffer: MutableAggregationBuffer): Unit = {
    buffer(0) = 0
  }
  
  // 指的是,每个分组,有新的值进来的时候,如何进行分组对应的聚合值的计算
  def update(buffer: MutableAggregationBuffer, input: Row): Unit = {
    buffer(0) = buffer.getAs[Int](0) + 1
  }
  
  // 由于Spark是分布式的,所以一个分组的数据,
//可能会在不同的节点上进行局部聚合,就是update
  // 但是,最后一个分组,在各个节点上的聚合值,要进行merge,也就是合并
  def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = {
    buffer1(0) = buffer1.getAs[Int](0) + buffer2.getAs[Int](0)  
  }
  
  // 最后,指的是,一个分组的聚合值,
//如何通过中间的缓存聚合值,最后返回一个最终的聚合值
  def evaluate(buffer: Row): Any = {
    buffer.getAs[Int](0)    
  }  
}
package cn.spark.study.sql

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.Row
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.types.StructField
import org.apache.spark.sql.types.StringType

object UDAF {
  
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf()
        .setMaster("local") 
        .setAppName("UDAF")
    val sc = new SparkContext(conf)
    val sqlContext = new SQLContext(sc)
  
    // 构造模拟数据
    val names = Array("Leo", "Marry", "Jack", "Tom", "Tom", "Tom", "Leo")  
    val namesRDD = sc.parallelize(names, 5) 
    val namesRowRDD = namesRDD.map { name => Row(name) }
    val structType = StructType(Array(StructField("name", StringType, true)))  
    val namesDF = sqlContext.createDataFrame(namesRowRDD, structType) 
    
    // 注册一张names表
    namesDF.registerTempTable("names")  
    
    // 定义和注册自定义函数
    // 定义函数:自己写匿名函数
    // 注册函数:SQLContext.udf.register()
    sqlContext.udf.register("strCount", new StringCount) 
    
    // 使用自定义函数
    sqlContext.sql("select name,strCount(name) from names group by name")  
        .collect()
        .foreach(println)  
  }
  
}
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,875评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,569评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,475评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,459评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,537评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,563评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,580评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,326评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,773评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,086评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,252评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,921评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,566评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,190评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,435评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,129评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,125评论 2 352

推荐阅读更多精彩内容