数据统计分析——SPSS 25

著名的权威统计软件——spss 25是全球最为知名的统计产品与服务解决方案,全球许多知名的报刊杂志和其他科研与统计单位都采用SPSS来进行自动绘图统计和数据的深入分析。它是世界上最先开始采用图形菜单启动界面来位用户提供数据统计的软件,也是第一款利用Window的窗口方式来展示各种管理和数据分析的统计软件,同时在国际学术界有着一个不成文的规定,凡是使用SPSS软件完成的计算和统计分析,可以不必说明算法,而直接被所有专家所认可,由此可见SPSS的影响力之大无法想象。

SPSS是一款统计产品与服务解决方案的软件。SPSS为IBM公司推出的一系列用于统计学分析运算、数据挖掘、预测分析和决策支持任务的软件产品及相关服务的总称。SPSS 25简单的来说其实就是一个组合式软件包,该软件包集数据录入、整理和分析功能于一身,且程序将这些功能全部按照特定的功能来进行模块化分类,用户只需根据自己所需要的功能来选择相应的模块进行操作即可。SPSS 25提供了大量专业统计工具,如描述性统计、数据准备、绘图、二元统计过程、因子和聚类分析以及线性和顺序回归等实用功能,集数据录入、资料编辑、数据管理、统计分析、报表制作、图形绘制为一体,擅长于理解复杂的模式和关联,使用户能够得出结论并做出预测。它的主要功能集中在数据管理、统计分析、图表分析和输出管理等功能上,其中统计分析为最主要的功能,用户在统计的过程中可实现描述性统计、一般线性模型、相关分析、回归分析和聚类分析等。同时程序的分析结果也有别于其他统计软件,它的结果较之更为清晰、直观和易用,用户若有需要甚至可直接在此基础上读取Excel及Dbf数据文件。spss 25自带有11种类型136个函数,它提供了从简单的统计描述到复杂的多因素的所有统计与分析方法,如协方差分析、判别分析、二维相关、秩相关和偏相关等,同时它支持读取及输出各种格式文件,包括*.dbf文件和*.xls文件等,且它能够将用户所制作的图形直接转换为7种图形文件,结构也可保存为*.txt及html格式的文件。

一、数据管理

1)超长变量名:在12版中,变量名已经最多可以为64个字符长度,13版中可能还要大大放宽这一限制,以达到对当今各种复杂数据仓库更好的兼容性。

2)改进的Autorecode过程:该过程将可以使用自动编码模版,从而用户可以按自定义的顺序,而不是默认的ASCII码顺序进行变量值的重编码。另外,Autorecode过程将可以同时对多个变量进行重编码,以提高分析效率。

3)改进的日期/时间函数:本次的改进将集中在使得两个日期/时间差值的计算,以及对日期变量值的增减更为容易上

二、结果报告

1)统计图:在经过一年的使用后,新的常规图操作界面已基本完善,本次的改进除使得操作更为便捷外,还突出了两个重点。首先在常规图中引入更多的交互图功能,如图组(Paneled charts),带误差线的分类图形如误差线条图和线图,三维效果的简单、堆积和分段饼图等。其次是引入几种新的图形,已知的有人口金字塔和点密度图两种。

2)统计表:几乎全部过程的输出都将会弃用文本,改为更美观的枢轴表。而且枢轴表的表现和易用性会得到进一步的提高,并加入了一些新的功能,如可以对统计量进行排序、在表格中合并/省略若干小类的输出等。此外,枢轴表将可以被直接导出到PowerPoint中,这些无疑都方便了用户的使用。

三、统计建模

Complex Samples是12版中新增的模块,用于实现复杂抽样的设计方案,以及对相应的数据进行描述。但当时并未提供统计建模功能。在13版中,这将会有很大的改观。一般线形模型将会被完整地引入复杂抽样模块中,以实现对复杂抽样研究中各种连续性变量的建模预测功能,例如对市场调研中的客户满意度数据进行建模。对于分类数据,Logistic回归则将会被系统的引入。这样,对于一个任意复杂的抽样研究,如多阶段分层整群抽样,或者更复杂的PPS抽样,研究者都可以在该模块中轻松的实现从抽样设计、统计描述到复杂统计建模以发现影响因素的整个分析过程,方差分析模型、线形回归模型、Logistic回归模型等复杂的统计模型都可以加以使用,而操作方式将会和完全随机抽样数据的分析操作没有什么差别。可以预见,该模块的推出将会大大促进国内对复杂抽样时统计推断模型的正确应用

四、模块

1)这个模块实际上就是将以前单独发行的SPSS AnswerTree软件整合进了SPSS平台。笔者几年前在自己的网站上介绍SPSS 11的新功能时,曾经很尖锐地指出SPSS的产品线过于分散,应当把各种功能较单一的小软件,如AnswerTree、Sample Power等整合到SPSS等几个平台上去。看来SPSS公司也意识到了这一点,而AnswerTree就是在此背景下第一个被彻底整合的产品。

2)Classification Tree模块基于数据挖掘中发展起来的树结构模型对分类变量或连续变量进行预测,可以方便、快速的对样本进行细分,而不需要用户有太多的统计专业知识。在市场细分和数据挖掘中有较广泛的应用。已知该模块提供了CHAID、Exhaustive CHAID和C&RT三种算法,在AnswerTree中提供的QUEST算法尚不能肯定是否会被纳入。

3)为了方便新老用户的使用,Tree模块在操作方式上不再使用AnswerTree中的向导方式,而是SPSS近两年开始采用的交互式选项卡对话框。但是,整个选项卡界面的内容实际上是和原先的向导基本一致的,另外,模型的结果输出仍然是AnswerTree中标准的树形图,这使得AnswerTree的老用户基本上不需要专门的学习就能够懂得如何使用该模块。

五、兼容性

随着自身产品线的不断完善,SPSS公司的产品体系已经日益完整,而不同产品间的互补和兼容性也在不断加以改进。在13版中,SPSS软件已经可以和其他一些最新的产品很好的整合在一起,形成更为完整的解决方案。例如,SPSS、SPSS Data Entry和新发布的SPSS Text Analysis for Surveys一起就形成了对调查研究的完整解决方案。而新增的SPSS Classification Trees模块将使得SPSS软件本身就能够针对市场细分工作提供更为完整的方法体系。

SPSS 25安装包 提取码:8c2r

用百度网盘下载好安装包都,鼠标右键解压到“SPSS 25”

打开解压后的文件夹,即可看到安装步骤,按照步骤操作就可以了。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,047评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,807评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,501评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,839评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,951评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,117评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,188评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,929评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,372评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,679评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,837评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,536评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,168评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,886评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,129评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,665评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,739评论 2 351

推荐阅读更多精彩内容