动手学习RAG: moka-ai/m3e 模型微调deepspeed与对比学习

1. 环境准备

pip install open-retrievals

2. 使用M3E模型

from retrievals import AutoModelForEmbedding

embedder = AutoModelForEmbedding.from_pretrained('moka-ai/m3e-base', pooling_method='mean')
embedder

[图片上传失败...(image-d940b0-1726231154763)]

sentences = [
    '* Moka 此文本嵌入模型由 MokaAI 训练并开源,训练脚本使用 uniem',
    '* Massive 此文本嵌入模型通过**千万级**的中文句对数据集进行训练',
    '* Mixed 此文本嵌入模型支持中英双语的同质文本相似度计算,异质文本检索等功能,未来还会支持代码检索,ALL in one'
]

embeddings = embedder.encode(sentences)

for sentence, embedding in zip(sentences, embeddings):
    print("Sentence:", sentence)
    print("Embedding:", embedding)
    print("")

[图片上传失败...(image-a421df-1726231154763)]

3. deepspeed 微调M3E模型

数据仍然采用之前介绍的t2-ranking数据集

  • deepspeed配置保存为 ds_zero2_no_offload.json
{
    "fp16": {
        "enabled": "auto",
        "loss_scale": 0,
        "loss_scale_window": 100,
        "initial_scale_power": 16,
        "hysteresis": 2,
        "min_loss_scale": 1e-10
    },

    "zero_optimization": {
        "stage": 2,
        "allgather_partitions": true,
        "allgather_bucket_size": 1e8,
        "overlap_comm": true,
        "reduce_scatter": true,
        "reduce_bucket_size": 1e8,
        "contiguous_gradients": true
    },

    "gradient_accumulation_steps": "auto",
    "gradient_clipping": "auto",
    "steps_per_print": 2000,
    "train_batch_size": "auto",
    "train_micro_batch_size_per_gpu": "auto",
    "wall_clock_breakdown": false
}

这里稍微修改了open-retrievals这里的代码,主要是修改了导入为包的导入,而不是相对引用。保存文件为embed.py

"""Embedding fine tune pipeline"""

import logging
import os
import pickle
from dataclasses import dataclass, field
from pathlib import Path
from typing import List, Optional

import torch
from torch.utils.data import DataLoader
from transformers import AutoTokenizer, HfArgumentParser, TrainingArguments, set_seed

from retrievals import (
    EncodeCollator,
    EncodeDataset,
    PairCollator,
    RetrievalTrainDataset,
    TripletCollator,
)
from retrievals.losses import AutoLoss, InfoNCE, SimCSE, TripletLoss
from retrievals.models.embedding_auto import AutoModelForEmbedding
from retrievals.trainer import RetrievalTrainer

# os.environ["WANDB_LOG_MODEL"] = "false"
logger = logging.getLogger(__name__)


@dataclass
class ModelArguments:
    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
    )
    causal_lm: bool = field(default=False, metadata={'help': "Whether the model is a causal lm or not"})
    lora_path: Optional[str] = field(default=None, metadata={'help': "Lora adapter save path"})


@dataclass
class DataArguments:
    data_name_or_path: str = field(default=None, metadata={"help": "Path to train data"})
    train_group_size: int = field(default=2)
    unfold_each_positive: bool = field(default=False)
    query_max_length: int = field(
        default=32,
        metadata={
            "help": "The maximum total input sequence length after tokenization for passage. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    document_max_length: int = field(
        default=128,
        metadata={
            "help": "The maximum total input sequence length after tokenization for passage. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    query_instruction: str = field(default=None, metadata={"help": "instruction for query"})
    document_instruction: str = field(default=None, metadata={"help": "instruction for document"})
    query_key: str = field(default=None)
    positive_key: str = field(default='positive')
    negative_key: str = field(default='negative')
    is_query: bool = field(default=False)
    encoding_save_file: str = field(default='embed.pkl')

    def __post_init__(self):
        # self.data_name_or_path = 'json'
        self.dataset_split = 'train'
        self.dataset_language = 'default'

        if self.data_name_or_path is not None:
            if not os.path.isfile(self.data_name_or_path) and not os.path.isdir(self.data_name_or_path):
                info = self.data_name_or_path.split('/')
                self.dataset_split = info[-1] if len(info) == 3 else 'train'
                self.data_name_or_path = "/".join(info[:-1]) if len(info) == 3 else '/'.join(info)
                self.dataset_language = 'default'
                if ':' in self.data_name_or_path:
                    self.data_name_or_path, self.dataset_language = self.data_name_or_path.split(':')


@dataclass
class RetrieverTrainingArguments(TrainingArguments):
    train_type: str = field(default='pairwise', metadata={'help': "train type of point, pair, or list"})
    negatives_cross_device: bool = field(default=False, metadata={"help": "share negatives across devices"})
    temperature: Optional[float] = field(default=0.02)
    fix_position_embedding: bool = field(
        default=False, metadata={"help": "Freeze the parameters of position embeddings"}
    )
    pooling_method: str = field(default='cls', metadata={"help": "the pooling method, should be cls or mean"})
    normalized: bool = field(default=True)
    loss_fn: str = field(default='infonce')
    use_inbatch_negative: bool = field(default=True, metadata={"help": "use documents in the same batch as negatives"})
    remove_unused_columns: bool = field(default=False)
    use_lora: bool = field(default=False)
    use_bnb_config: bool = field(default=False)
    do_encode: bool = field(default=False, metadata={"help": "run the encoding loop"})
    report_to: Optional[List[str]] = field(
        default="none", metadata={"help": "The list of integrations to report the results and logs to."}
    )


def main():
    parser = HfArgumentParser((ModelArguments, DataArguments, RetrieverTrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()
    model_args: ModelArguments
    data_args: DataArguments
    training_args: TrainingArguments

    if (
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
    ):
        raise ValueError(
            f"Output directory ({training_args.output_dir}) already exists and is not empty. "
            "Use --overwrite_output_dir to overcome."
        )

    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        training_args.local_rank,
        training_args.device,
        training_args.n_gpu,
        bool(training_args.local_rank != -1),
        training_args.fp16,
    )
    logger.info("Training/evaluation parameters %s", training_args)
    logger.info("Model parameters %s", model_args)
    logger.info("Data parameters %s", data_args)

    set_seed(training_args.seed)

    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=False,
    )
    if training_args.use_bnb_config:
        from transformers import BitsAndBytesConfig

        logger.info('Use quantization bnb config')
        quantization_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.bfloat16,
        )
    else:
        quantization_config = None

    if training_args.do_train:
        model = AutoModelForEmbedding.from_pretrained(
            model_name_or_path=model_args.model_name_or_path,
            pooling_method=training_args.pooling_method,
            use_lora=training_args.use_lora,
            quantization_config=quantization_config,
        )

        loss_fn = AutoLoss(
            loss_name=training_args.loss_fn,
            loss_kwargs={
                'use_inbatch_negative': training_args.use_inbatch_negative,
                'temperature': training_args.temperature,
            },
        )

        model = model.set_train_type(
            "pairwise",
            loss_fn=loss_fn,
        )

        train_dataset = RetrievalTrainDataset(
            args=data_args,
            tokenizer=tokenizer,
            positive_key=data_args.positive_key,
            negative_key=data_args.negative_key,
        )
        logger.info(f"Total training examples: {len(train_dataset)}")

        trainer = RetrievalTrainer(
            model=model,
            args=training_args,
            train_dataset=train_dataset,
            data_collator=TripletCollator(
                tokenizer,
                query_max_length=data_args.query_max_length,
                document_max_length=data_args.document_max_length,
                positive_key=data_args.positive_key,
                negative_key=data_args.negative_key,
            ),
        )

        Path(training_args.output_dir).mkdir(parents=True, exist_ok=True)

        trainer.train()
        # trainer.save_model(training_args.output_dir)
        model.save_pretrained(training_args.output_dir)

        if trainer.is_world_process_zero():
            tokenizer.save_pretrained(training_args.output_dir)

    if training_args.do_encode:
        model = AutoModelForEmbedding.from_pretrained(
            model_name_or_path=model_args.model_name_or_path,
            pooling_method=training_args.pooling_method,
            use_lora=training_args.use_lora,
            quantization_config=quantization_config,
            lora_path=model_args.lora_path,
        )

        max_length = data_args.query_max_length if data_args.is_query else data_args.document_max_length
        logger.info(f'Encoding will be saved in {training_args.output_dir}')

        encode_dataset = EncodeDataset(args=data_args, tokenizer=tokenizer, max_length=max_length, text_key='text')
        logger.info(f"Number of train samples: {len(encode_dataset)}, max_length: {max_length}")

        encode_loader = DataLoader(
            encode_dataset,
            batch_size=training_args.per_device_eval_batch_size,
            collate_fn=EncodeCollator(tokenizer, max_length=max_length, padding='max_length'),
            shuffle=False,
            drop_last=False,
            num_workers=training_args.dataloader_num_workers,
        )

        embeddings = model.encode(encode_loader, show_progress_bar=True, convert_to_numpy=True)
        lookup_indices = list(range(len(encode_dataset)))

        with open(os.path.join(training_args.output_dir, data_args.encoding_save_file), 'wb') as f:
            pickle.dump((embeddings, lookup_indices), f)


if __name__ == "__main__":
    main()

  • 最终调用文件 shell run.sh
MODEL_NAME="moka-ai/m3e-base"

TRAIN_DATA="/root/kag101/src/open-retrievals/t2/t2_ranking.jsonl"
OUTPUT_DIR="/root/kag101/src/open-retrievals/t2/ft_out"


# loss_fn: infonce, simcse

deepspeed -m --include localhost:0 embed.py \
  --deepspeed ds_zero2_no_offload.json \
  --output_dir $OUTPUT_DIR \
  --overwrite_output_dir \
  --model_name_or_path $MODEL_NAME \
  --do_train \
  --data_name_or_path $TRAIN_DATA \
  --positive_key positive \
  --negative_key negative \
  --pooling_method mean \
  --loss_fn infonce \
  --use_lora False \
  --query_instruction "" \
  --document_instruction "" \
  --learning_rate 3e-5 \
  --fp16 \
  --num_train_epochs 5 \
  --per_device_train_batch_size 32 \
  --dataloader_drop_last True \
  --query_max_length 64 \
  --document_max_length 256 \
  --train_group_size 4 \
  --logging_steps 100 \
  --temperature 0.02 \
  --save_total_limit 1 \
  --use_inbatch_negative false

[图片上传失败...(image-b66e43-1726231154763)]

4. 测试

微调前性能 c-mteb t2-ranking score

[图片上传失败...(image-7db424-1726231154763)]

微调后性能

[图片上传失败...(image-4a3e4b-1726231154763)]

采用infoNCE损失函数,没有加in-batch negative,而关注的是困难负样本,经过微调map从0.654提升至0.692,mrr从0.754提升至0.805

欢迎关注最新的更新https://github.com/LongxingTan/open-retrievals

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 221,635评论 6 515
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,543评论 3 399
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 168,083评论 0 360
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,640评论 1 296
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,640评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,262评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,833评论 3 421
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,736评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,280评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,369评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,503评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,185评论 5 350
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,870评论 3 333
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,340评论 0 24
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,460评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,909评论 3 376
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,512评论 2 359

推荐阅读更多精彩内容