LRU和LFU缓存置换算法

对于web开发而言,缓存必不可少,也是提高性能最常用的方式。无论是浏览器缓存(如果是chrome浏览器,可以通过chrome:://cache查看),还是服务端的缓存(通过memcached或者redis等内存数据库)。缓存不仅可以加速用户的访问,同时也可以降低服务器的负载和压力。那么,了解常见的缓存淘汰算法的策略和原理就显得特别重要。

常见的缓存算法

  • LRU (Least recently used) 最近最少使用,如果数据最近被访问过,那么将来被访问的几率也更高。
  • LFU (Least frequently used) 最不经常使用,如果一个数据在最近一段时间内使用次数很少,那么在将来一段时间内被使用的可能性也很小。
  • FIFO (Fist in first out) 先进先出, 如果一个数据最先进入缓存中,则应该最早淘汰掉。

Cache置换

Cache工作原理要求它尽量保存最新数据,但是Cache一般大小有限,当Cache容量达到上限时,就会产生Cache替换的问题。最理想的情况是置换出未来短期内不会被再次访问的数据,但是我们无法预知未来,所以只能从数据在过去的访问情况中寻找规律进行置换。

LFU Cache置换算法

Least Frequently Used algorithm LFU是首先淘汰一定时期内被访问次数最少的页!

这种算法选择近期最少访问的页面作为被替换的页面。显然,这是一种合理的算法,因为到目前为止最少使用的页面,很可能也是将来最少访问的页面。

代码如下:

import java.util.*;

public class LFUCache {
    private static final int DEFAULT_MAX_SIZE = 3;
    private int capacity = DEFAULT_MAX_SIZE;
    //保存缓存的访问频率和时间
    private final Map<Integer, HitRate> cache = new HashMap<Integer, HitRate>();
    //保存缓存的KV
    private final Map<Integer, Integer> KV = new HashMap<Integer, Integer>();

    // @param capacity, an integer
    public LFUCache(int capacity) {
        this.capacity = capacity;
    }

    // @param key, an integer
    // @param value, an integer
    // @return nothing
    public void set(int key, int value) {
        Integer v = KV.get(key);
        if (v == null) {
            if (cache.size() == capacity) {
                Integer k = getKickedKey();
                KV.remove(k);
                cache.remove(k);
            }
            cache.put(key, new HitRate(key, 1, System.nanoTime()));
        } else { //若是key相同只增加频率,更新时间,并不进行置换
            HitRate hitRate = cache.get(key);
            hitRate.hitCount += 1;
            hitRate.lastTime = System.nanoTime();
        }
        KV.put(key, value);
    }

    public int get(int key) {
        Integer v = KV.get(key);
        if (v != null) {
            HitRate hitRate = cache.get(key);
            hitRate.hitCount += 1;
            hitRate.lastTime = System.nanoTime();
            return v;
        }
        return -1;
    }
    // @return 要被置换的key
    private Integer getKickedKey() {
        HitRate min = Collections.min(cache.values());
        return min.key;
    }

    class HitRate implements Comparable<HitRate> {
        Integer key;
        Integer hitCount; // 命中次数
        Long lastTime; // 上次命中时间

        public HitRate(Integer key, Integer hitCount, Long lastTime) {
            this.key = key;
            this.hitCount = hitCount;
            this.lastTime = lastTime;
        }

        public int compareTo(HitRate o) {
            int hr = hitCount.compareTo(o.hitCount);
            return hr != 0 ? hr : lastTime.compareTo(o.lastTime);
        }
    }

    public static void main(String[] as) throws Exception {
        LFUCache cache = new LFUCache(3);
        cache.set(2, 2);
        cache.set(1, 1);

        System.out.println(cache.get(2));
        System.out.println(cache.get(1));
        System.out.println(cache.get(2));

        cache.set(3, 3);
        cache.set(4, 4);

        System.out.println(cache.get(3));
        System.out.println(cache.get(2));
        System.out.println(cache.get(1));
        System.out.println(cache.get(4));

    }
}

LRU Cache置换算法

Least Recently Used algorithm LRU是首先淘汰最长时间未被使用的页面。

这种算法把近期最久没有被访问过的页面作为被替换的页面。它把LFU算法中要记录数量上的"多"与"少"简化成判断"有"与"无",因此,实现起来比较容易。

像浏览器的缓存策略、memcached的缓存策略都是使用LRU这个算法,LRU算法会将近期最不会访问的数据淘汰掉。LRU如此流行的原因是实现比较简单,而且对于实际问题也很实用,良好的运行时性能,命中率较高。下面谈谈如何实现LRU缓存:


  • 新数据插入到链表头部
  • 每当缓存命中(即缓存数据被访问),则将数据移到链表头部
  • 当链表满的时候,将链表尾部的数据丢弃

LRU Cache具备的操作:

  • set(key,value):如果key在hashmap中存在,则先重置对应的value值,然后获取对应的节点cur,将cur节点从链表删除,并移动到链表的头部;若果key在hashmap不存在,则新建一个节点,并将节点放到链表的头部。当Cache存满的时候,将链表最后一个节点删除即可。

  • get(key):如果key在hashmap中存在,则把对应的节点放到链表头部,并返回对应的value值;如果不存在,则返回-1。

代码如下:

//实现起来比较简单. 维护一个链表,每次数据新添加或者有访问时移动到链表尾,
//每次淘汰数据则是淘汰链表头部的数据.
//也就是最近最少访问的数据在链表头部,最近刚访问的数据在链表尾部    

public class LRUCache {
    private class Node{
        Node prev;
        Node next;
        int key;
        int value;

        public Node(int key, int value) {
            this.key = key;
            this.value = value;
            this.prev = null;
            this.next = null;
        }
    }

    private int capacity;
    private HashMap<Integer, Node> hs = new HashMap<Integer, Node>();
    private Node head = new Node(-1, -1);
    private Node tail = new Node(-1, -1);
    // @param capacity, an integer
    public LRUCache(int capacity) {
        // write your code here
        this.capacity = capacity;
        tail.prev = head;
        head.next = tail;
    }

    // @return an integer
    public int get(int key) {
        // write your code here
        if( !hs.containsKey(key)) {
            return -1;
        }

        // remove current
        Node current = hs.get(key);
        current.prev.next = current.next;
        current.next.prev = current.prev;

        // move current to tail
        move_to_tail(current);

        return hs.get(key).value;


    }

    // @param key, an integer
    // @param value, an integer
    // @return nothing
    public void set(int key, int value) {
        // write your code here
        if( get(key) != -1) {
            hs.get(key).value = value;
            return;
        }

        if (hs.size() == capacity) {
            hs.remove(head.next.key);
            head.next = head.next.next;
            head.next.prev = head;
        }

        Node insert = new Node(key, value);
        hs.put(key, insert);
        move_to_tail(insert);
    }

    private void move_to_tail(Node current) {
        current.prev = tail.prev;
        tail.prev = current;
        current.prev.next = current;
        current.next = tail;
    }

    public static void main(String[] as) throws Exception {
        LRUCache cache = new LRUCache(3);
        cache.set(2, 2);
        cache.set(1, 1);

        System.out.println(cache.get(2));
        System.out.println(cache.get(1));
        System.out.println(cache.get(2));

        cache.set(3, 3);
        cache.set(4, 4);

        System.out.println(cache.get(3));
        System.out.println(cache.get(2));
        System.out.println(cache.get(1));
        System.out.println(cache.get(4));

    }
}

LRU和LFU的区别:

LRU是最近最少使用页面置换算法(Least Recently Used),也就是首先淘汰最长时间未被使用的页面。

LFU是最近最不常用页面置换算法(Least Frequently Used),也就是淘汰一定时期内被访问次数最少的页。

比如,第二种方法的时期T为10分钟,如果每分钟进行一次调页,主存块为3,若所需页面走向为2 1 2 1 2 3 4

注意,当调页面4时会发生缺页中断

若按LRU算法,应换页面1(1页面最久未被使用) 但按LFU算法应换页面3(十分钟内,页面3只使用了一次)

总结

可见LRU关键是看页面最后一次被使用到发生调度的时间长短,而LFU关键是看一定时间段内页面被使用的频率!

参考:
https://blog.csdn.net/permike/article/details/92972951

https://zhuanlan.zhihu.com/p/66188820?utm_source=wechat_session

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,635评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,628评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,971评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,986评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,006评论 6 394
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,784评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,475评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,364评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,860评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,008评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,152评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,829评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,490评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,035评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,156评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,428评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,127评论 2 356