mmdetection-2.25.3的环境配置与安装

跌跌撞撞

配置任何一个深度学习的环境,依赖冲突都是难免的,何况看着一两年前的教程,加之版本更替,踩得坑就更多了

1.Anaconda虚拟环境搭建

打开Anaconda Prompt,创建新的虚拟环境:mmlab

conda create -n mmlab python=3.6

这里我踩了一个坑,我应该定位虚拟环境的位置,方便pycharm配置的时候好找一些

conda create --prefix D:\Anaconda3\envs\openmmlab  python=3.8 -y

之后进行虚拟环境的切换

activate mmlab

2.Pytorch安装

根据Pytorch官网的教程安装Pytorch,注意根据自己电脑的CUDA版本选择。在命令行运行nvcc -V查看当前cuda版本:
查找到自己的版本之后,进行如下代码
conda install pytorch==1.10.2 torchvision torchaudio cudatoolkit=11.3 -c pytorch

3.MMCV安装(1.6.2版本)

pip install mmcv==1.6.2 -i https://download.openmmlab.com/mmcv/dist/cu113/torch1.10/index.html

MMDetection安装(2.25.3版本)

到github上选中tag为2.25.3版本的MMDetection后,下载zip后解压
在mmlab虚拟环境中打开mmdetection-2.25.3文件夹
运行如下代码,这里使用清华镜像

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple/ --trusted-host pypi.tuna.tsinghua.edu.cn
python setup.py develop

最后在mmdetection-2.25.3文件夹中创建一个checkpoints文件夹,下载预训练模型(下载链接)放置在这个文件夹中,在主目录下新建test.py,代码如下

import os

from mmdet.apis import init_detector, inference_detector


def demo_mmdet():
    base_dir = r'D:\Program Files\Third_Part_Lib\mmdetection'       # mmdetection的安装目录

    config_file = os.path.join(base_dir, r'configs\faster_rcnn\faster_rcnn_r50_fpn_1x_coco.py')
    # download the checkpoint from model zoo and put it in `checkpoints/`
    # url: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth
    checkpoint_file = r'checkpoints\faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth'

    # 根据配置文件和 checkpoint 文件构建模型
    model = init_detector(config_file, checkpoint_file, device='cuda:0')

    # 测试单张图片并展示结果
    img = os.path.join(base_dir, r'demo\demo.jpg') # 或者 img = mmcv.imread(img),这样图片仅会被读一次
    result = inference_detector(model, img)
    # 在一个新的窗口中将结果可视化
    model.show_result(img, result, out_file=None, show=True)


if __name__ == '__main__':
    demo_mmdet()

若出现目标检测图片,则说明成功

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,125评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,293评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,054评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,077评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,096评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,062评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,988评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,817评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,266评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,486评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,646评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,375评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,974评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,621评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,642评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,538评论 2 352

推荐阅读更多精彩内容