代码准备:
#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
typedef int Status;
//1.排序算法数据结构设计
//用于要排序数组个数最大值,可根据需要修改
#define MAXSIZE 10000
typedef struct
{
//用于存储要排序数组,r[0]用作哨兵或临时变量
int r[MAXSIZE+1];
//用于记录顺序表的长度
int length;
}SqList;
//2.排序常用交换函数实现
//交换L中数组r的下标为i和j的值
void swap(SqList *L,int i,int j)
{
int temp=L->r[i];
L->r[i]=L->r[j];
L->r[j]=temp;
}
//3.数组打印
void print(SqList L)
{
int i;
for(i=1;i<L.length;i++)
printf("%d,",L.r[i]);
printf("%d",L.r[i]);
printf("\n");
}
归并排序
归并排序(Merging Sort) 就是利用归并的思想实现排序方法. 它的原理是假设初始序列含有n个记录,则可以看成n个有序的子序列. 每个子序列的⻓长度为1,然后两合并.得到[n/2]个长度为2或1的有序子序列, 再两两归并. ......如此重复,直到得到一个长度为n 的有序列为此. 这种排序方法称为2路路归并排序
代码实现
//③ 将有序的SR[i..mid]和SR[mid+1..n]归并为有序的TR[i..n]
void Merge(int SR[],int TR[],int i,int m,int n)
{
int j,k,l;
//1.将SR中记录由小到大地并入TR
for(j=m+1,k=i;i<=m && j<=n;k++)
{
if (SR[i]<SR[j])
TR[k]=SR[i++];
else
TR[k]=SR[j++];
}
//2.将剩余的SR[i..mid]复制到TR
if(i<=m)
{
for(l=0;l<=m-i;l++)
TR[k+l]=SR[i+l];
}
//3.将剩余的SR[j..mid]复制到TR
if(j<=n)
{
for(l=0;l<=n-j;l++)
TR[k+l]=SR[j+l];
}
}
//② 将SR[s...t] 归并排序为 TR1[s...t];
void MSort(int SR[],int TR1[],int low, int hight){
int mid;
int TR2[MAXSIZE+1];
if(low == hight)
TR1[low] = SR[low];
else{
//1.将SR[low...hight] 平分成 SR[low...mid] 和 SR[mid+1,hight];
mid = (low + hight)/2;
//2. 递归将SR[low,mid]归并为有序的TR2[low,mid];
MSort(SR, TR2, low, mid);
//3. 递归将SR[mid+1,hight]归并为有序的TR2[mid+1,hight];
MSort(SR, TR2, mid+1, hight);
//4. 将TR2[low,mid] 与 TR2[mid+1,hight], 归并到TR1[low,hight]中
Merge(TR2, TR1, low, mid, hight);
}
}
//① 对顺序表L进行归并排序
void MergeSort(SqList *L){
MSort(L->r,L->r,1,L->length);
}
//12.归并排序(非递归)-->对顺序表L进行非递归排序
//对SR数组中相邻长度为s的子序列进行两两归并到TR[]数组中;
void MergePass(int SR[],int TR[],int s,int length){
int i = 1;
int j;
//①合并数组
//s=1 循环结束位置:8 (9-2*1+1=8)
//s=2 循环结束位置:6 (9-2*2+1=6)
//s=4 循环结束位置:2 (9-2*4+1=2)
//s=8 循环结束位置:-6(9-2*8+1=-6) s = 8时,不会进入到循环;
while (i<= length-2*s+1) {
//两两归并(合并相邻的2段数据)
Merge(SR, TR, i, i+s-1, i+2*s-1);
i = i+2*s;
/*
s = 1,i = 1,Merge(SR,TR,1,1,2);
s = 1,i = 3,Merge(SR,TR,3,3,4);
s = 1,i = 5,Merge(SR,TR,5,5,6);
s = 1,i = 7,Merge(SR,TR,7,7,8);
s = 1,i = 9,退出循环;
*/
/*
s = 2,i = 1,Merge(SR,TR,1,2,4);
s = 2,i = 5,Merge(SR,TR,5,6,8);
s = 2,i = 9,退出循环;
*/
/*
s = 4,i = 1,Merge(SR,TR,1,4,8);
s = 4,i = 9,退出循环;
*/
}
//②如果i<length-s+1,表示有2个长度不等的子序列. 其中一个长度为length,另一个小于length
// 1 < (9-8+1)(2)
//s = 8时, 1 < (9-8+1)
if(i < length-s+1){
//Merge(SR,TR,1,8,9)
Merge(SR, TR, i, i+s-1, length);
}else{
//③只剩下一个子序列;
for (j = i; j <=length; j++) {
TR[j] = SR[j];
}
}
}
void MergeSort2(SqList *L){
int *TR = (int *)malloc(sizeof(int) * L->length);
int k = 1;
//k的拆分变换是 1,2,4,8;
while (k < L->length) {
//将SR数组按照s=2的长度进行拆分合并,结果存储到TR数组中;
//注意:此时经过第一轮的归并排序的结果是存储到TR数组了;
MergePass(L->r, TR, k, L->length);
k = 2*k;
//将刚刚归并排序后的TR数组,按照s = 2k的长度进行拆分合并. 结果存储到L->r数组中;
//注意:因为上一轮的排序的结果是存储到TR数组,所以这次排序的数据应该是再次对TR数组排序;
MergePass(TR, L->r, k, L->length);
k = 2*k;
}
}
快速排序
快速排序(Quick Sort)的基本思想: 通过一趟排序将待排序记录分割成独⽴立的两部分; 其中一部分记录的关键字均为另一部分记录的关键字小,则可分别对两部分记 录继续进行排序,以达到整个排序有序的目的.
代码实现:
//③交换顺序表L中子表的记录,使枢轴记录到位,并返回其所在位置
//此时在它之前(后)的记录均不大(小)于它
int Partition(SqList *L,int low,int high){
int pivotkey;
//pivokey 保存子表中第1个记录作为枢轴记录;
pivotkey = L->r[low];
//① 从表的两端交替地向中间扫描;
while (low < high) {
//② 比较,从高位开始,找到比pivokey更小的值的下标位置;
while (low < high && L->r[high] >= pivotkey)
high--;
//③ 将比枢轴值小的记录交换到低端;
swap(L, low, high);
//④ 比较,从低位开始,找到比pivokey更大的值的下标位置;
while (low < high && L->r[low] <= pivotkey)
low++;
//⑤ 将比枢轴值大的记录交换到高端;
swap(L, low, high);
}
//返回枢轴pivokey 所在位置;
return low;
}
//② 对顺序表L的子序列L->r[low,high]做快速排序;
void QSort(SqList *L,int low,int high){
int pivot;
if(low < high){
//将L->r[low,high]一分为二,算出中枢轴值 pivot;
pivot = Partition(L, low, high);
printf("pivot = %d L->r[%d] = %d\n",pivot,pivot,L->r[pivot]);
//对低子表递归排序;
QSort(L, low, pivot-1);
//对高子表递归排序
QSort(L, pivot+1, high);
}
}
//① 调用快速排序(为了保证一致的调用风格)
void QucikSort(SqList *L){
QSort(L, 1, L->length);
}
//14 快速排序-优化
int Partition2(SqList *L,int low,int high){
int pivotkey;
/**1.优化选择枢轴**/
//① 计算数组中间的元素的下标值;
int m = low + (high - low)/2;
//② 将数组中的L->r[low] 是整个序列中左中右3个关键字的中间值;
//交换左端与右端的数据,保证左端较小;[9,1,5,8,3,7,4,6,2]
if(L->r[low]>L->r[high])
swap(L, low, high);
//交换中间与右端的数据,保证中间较小; [2,1,5,8,3,7,4,6,9];
if(L->r[m]>L->r[high])
swap(L, high, m);
//交换中间与左端,保证左端较小;[2,1,5,8,3,7,4,6,9]
if(L->r[m]>L->r[low])
swap(L, m, low);
//交换后的序列:3,1,5,8,2,7,4,6,9
//此时low = 3; 那么此时一定比选择 9,2更合适;
/**2.优化不必要的交换**/
//pivokey 保存子表中第1个记录作为枢轴记录;
pivotkey = L->r[low];
//将枢轴关键字备份到L->r[0];
L->r[0] = pivotkey;
//① 从表的两端交替地向中间扫描;
while (low < high) {
//② 比较,从高位开始,找到比pivokey更小的值的下标位置;
while (low < high && L->r[high] >= pivotkey)
high--;
//③ 将比枢轴值小的记录交换到低端;
//swap(L, low, high);
//③ 采用替换的方式将比枢轴值小的记录替换到低端
L->r[low] = L->r[high];
//④ 比较,从低位开始,找到比pivokey更大的值的下标位置;
while (low < high && L->r[low] <= pivotkey)
low++;
//⑤ 将比枢轴值大的记录交换到高端;
//swap(L, low, high);
//⑤ 采样替换的方式将比枢轴值大的记录替换到高端
L->r[high] = L->r[low];
}
//将枢轴数值替换会L->r[low]
L->r[low] = L->r[0];
//返回枢轴pivokey 所在位置;
return low;
}
//② 对顺序表L的子序列L->r[low,high]做快速排序;
#define MAX_LENGTH_INSERT_SORT 7 //数组长度的阀值
void QSort2(SqList *L,int low,int high){
int pivot;
//if(low < high){
//当high-low 大于常数阀值是用快速排序;
if((high-low)>MAX_LENGTH_INSERT_SORT){
//将L->r[low,high]一分为二,算出中枢轴值 pivot;
pivot = Partition(L, low, high);
printf("pivot = %d L->r[%d] = %d\n",pivot,pivot,L->r[pivot]);
//对低子表递归排序;
QSort(L, low, pivot-1);
//对高子表递归排序
QSort(L, pivot+1, high);
}else{
//当high-low小于常数阀值是用直接插入排序
InsertSort(L);
}
}
//① 快速排序优化
void QuickSort2(SqList *L)
{
QSort2(L,1,L->length);
}