Python常用深度学习框架介绍

Python深度学习生态的演变非常迅猛,一些强大的框架随着深度学习领域的发展逐渐被大量的人使用而流行起来。本文对一些常见的深度学习框架进行介绍,对它们的特点进行对比。

  • Tensorflow
    Tensorflow是Google开源的深度学习框架,有着非常广泛的应用。使用C++语言开发,使用数据流图DAG的形式进行计算。图中的节点代表数学计算。
    TensorFlow命令式的编程语言,是静态的。首先必须构建一个神经网络结构,然后一次又一次地使用同样的结构。如果想要改变网络结构,就必须从头开始。
    其灵活的架构可以部署在一个或多个CPU\GPU服务器中,或使用单一的API应用在移动设备中。有Python和C++的接口。
    由于其语言比较底层,有很多基于tensorflow的第三方库将Tensorflow的函数进行了封装。如:Keras,TFlearn,TensorFlow-slim,TensorLayer,Estimator。
    其中TensorFlow-slim是Google官方给出的高层封装库。包含在TensorFlow的库中。
    TFflearn是相比TF-slim更简洁的高层封装。没有集成在TensorFlow的包中,需要单独安装。其不仅对神经网络结构定义进行了封装,还对模型训练的过程进行了封装。

  • Keras
    Keras底层可以支持TensorFlow、MXNet、Theano。和TFLearn API类似,也对模型定义、损失函数、训练过程进行了封装。整个训练过程可分为数据处理、模型定义和模型训练三个部分。可以快速地搭建深度网络,灵活地选取训练参数来进行网路训练。Keras已被直接引入到TensorFlow的核心代码库,成为官方提供的高层封装之一。
    Keras API训练模型可以线定义一个Sequential类,在Sequential实例中,通过add函数添加网络层。通过compile函数 指定 优化函数、损失函数、训练过程中的监控指标。之后,Sequential实例可以通过fit函数来训练模型。

  • Caffe
    Caffe全称为Convolutional Architecture for Fast Feature Embedding,是一个清晰而高
    效的开惊深度学习框架,由伯克利视觉学中心进行维护。
    和TensorFlow一样用C++编写,早期只提供C++接口,随着后来的发展才提供了python的接口。
    Caffe对CNN的支持非常好,很多ImageNet比赛里面使用的网络都是用Caffe写的,这也是Caffe得以流行的原因。它的缺点是不够灵活,并且内存占用高。

  • Theano
    Theano在2008年诞生于蒙特利尔理工学院,其派生了大量深度学习python工具,包括blocks keras。
    Theano的核心是一个数学表达式的编译器,它知道如何获取你的结构。并使之成为一个 使用 numpy,本地库的高效代码。它是为深度学习中处理大型神经网络算法所需的计算而专门设计的,是这类库的首选之一。
  • Torch和Pytorch
    Facebook开源了大量Torch的深度学习模块和扩展。还被Twitter、CMU(卡耐基梅隆大学)、Salesforce等机构采用。特点是特别灵活,采用Lua开发。
    它是PyTorch的前身,PyTorch底层和Torch框架一样,但使用Python重新写了很多内容,提供Python接口。
    PyTorch通过一种反向自动求导的技术,可以容许零延迟地任意改变神经网络的行为。与TensorFlow不同,是一种动态的神经网络。
  • MXNet
    MXNet是亚马逊官方框架,有着非常好的分布式支持,性能特别好,占用显存低。
    开放的接口丰富,有Python、C++、R、Matlab、Scala、JavaScript。
    缺点是教程不够完善,社区不大。
  • Scikit-Learn
    Scikit-Learn也是非常流行的机器学习库之一。它拥有大量的数据挖掘和数据分析功能,使其成为研究人员和开发者的首选库。其内置了流行的NumPy、SciPy,matplotlib库,因此对许多已经使用这些库的人来说就有一种熟悉的感觉。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,293评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,604评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,958评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,729评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,719评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,630评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,000评论 3 397
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,665评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,909评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,646评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,726评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,400评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,986评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,959评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,996评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,481评论 2 342

推荐阅读更多精彩内容