机器学习的分类

1.2.1基本分类

统计学习或机器学习一般包括监督学习、无监督学习、强化学习。有时包括半监督学习、主动学习

监督学习

监督学习的本质是学习输入到输出的映射的统计规律

监督学习

本质是学习数据中的统计规律或潜在结构

强化学习

是指智能系统在于环境的连续互动中学习最优行为策略的机器学习问题。假设智能系统与环境互动基于马尔科夫决策过程,智能系统能观测的是与环境互动得到的数据序列。
强化学习本质是学习最优的序贯决策。。

1.2.2按模型分

概率模型非概率模型,概率模型取条件概率分布形式P(y|x),非概率模型取函数形式y = f(x)

概率模型代表

决策树、朴素贝叶斯、隐马尔科夫、条件随机场、概率潜在语义分析、潜在狄利克雷分配、高斯混合模型

非概率模型代表

感知机、支持向量机、k近邻、AdaBoost、k均值、潜在语义分析、神经网络

逻辑斯蒂回归即可看做概率模型,也可是非概率模型
条件分布P(y|x) 和函数y = f(x) 可以互相转化,条件分布最大化后得到函数,函数归一化后得到条件概率分布。

1.2.3按算法分类

在线学习

在线学习指每次接受一个样本进行预测,之后学习模型,并不断重复该操作的机器学习。

强化学习本身就拥有在线学习的特点。

批量学习

批量学习一次接受所有数据,学习模型,之后进行预测。

1.2.4按技巧分类

贝叶斯学习

在概率模型的学习和推理中,利用贝叶斯定理,计算在给定数据条件下模型的条件概率,即后验概率,并应用这个原理进行模型的估计,以及对数据的预测。

核方法

核方法实使用核函数标识和学习非线性模型的一种机器学习方法,可以用于监督学习和无监督学习。有一些线性模型的学习方法基于相似度计算,如向量内积计算。和方法可以把他们扩展到非线性模型的学习,使得应用范围更广泛。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,372评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,368评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,415评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,157评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,171评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,125评论 1 297
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,028评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,887评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,310评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,533评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,690评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,411评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,004评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,659评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,812评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,693评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,577评论 2 353

推荐阅读更多精彩内容