生活从来不缺问题,实际上我们就是走在不断解决问题、升级打怪的道路上。若是你解决了个人问题,自身获得成长。若是解决一大群人的问题,那么恭喜你创造了巨大价值,自然也会获得丰厚回报。所以解决问题能力的重要性我就不多说了,但知道和如何做到显然千差万别。不过就像笑来老师说很多事情都是有方法论的,前段时间曲凯老师也从明确问题、拆解问题、提出解决方案、总结问题四个步骤给出如何成为解决问题高手的方法论。
01.明确问题
所谓明确问题就是要清楚地知道自己要面对什么问题,这也是解决问题的起点和方向。但其实很多人一开始的方向就不对,就更别说最终能够解决问题了。举个例子今年公司收入只增长了7%,领导不满意要求你想办法如何提高公司收入。其实这个问题就是很模糊的,因为并没有明确要提高多少。这时你发现整个行业平均收入增长了10%,那你就可以跟老板说我们要让公司收入增长从5%增长到12%,比行业水平略高。我想老板大多数也是能够接受的,当然更重要的是这样明确了问题,有了解决目标,才能更好地解决。
02.拆解问题
在生活中我们会遇到问题时常常会感到无从下手,其实这也很正常。因为我们遇到的问题大多是复杂问题,是由多个维度和变量而成的,面对时自然没有头绪。而拆解问题就是把复杂问题拆成元问题,所谓元问题就是最本质、最细小问题。如此一来我们面对的是简单、明了的多个元问题,使问题更有逻辑、可落地。
把复杂问题拆分有利于问题的公式化。以网络公司广告收入为例,广告收入=展现量*点击率*单次点击价格。如此一来提高广告部门收入就很简单明了,无非就是提高展现量也就是让更多人看到广告、点击率或者单次点击价格。同时拆分问题也有利于个人从局部中跳出,从更高层思维看问题和要求自己。
我们可以看到把问题拆解是解决问题很重要的一环,那如何做好拆解过程呢?简单来说就是要遵守麦肯锡的mice原则,翻译成中文就是互相独立、完全穷尽,也就是说所有情况都必须考虑在内同时逻辑没有重复。在这原则下元问题可以有两种常见分类,一种是数理结构,另外一种就是并列结构。我们前面所说的公式化就是数理结构,在解决问题过程中也要尽量找到数理结构,因为逻辑简单、清晰,但很多时候元问题仅仅是数理结构无法包含的,此时就要用并列结构,比如说公司利润=收入-成本,在这里收入和成本就是并列关系。在大多数下我们拆解问题都要用到这两种分类,互相配合。
03.提出解决方案并总结
解决问题整个过程中明确问题、拆解问题是重点,应当占精力80%,尤其是拆解问题。而提出解决方案和总结占精力20%,因为当你很好地完成前两个步骤解决方案是自然而然地显现出来的,只要针对元问题提出解决方案就行了。
总结汇报方案是很多人会忽视的点,其实这也是比较重要的一环,因为如何总结汇报很多时候直接决定能否说服他人,能够争取多大支持。简单来说可以出结论拆解逻辑过程,重点突出,使汇报方案清晰、有重点。
想起罗胖在一期节目中说到要实现一个大目标的最好办法就是不断拆解成一个个清晰、可实现的小目标,其实与解决问题方式也有相似之处。想来很多事情的底层方法都有共同之处,也愿在以后生活遇到任何问题都能用系统方法论,成为解决问题的高手。