Customizing oncoplots
clp
6/1/2020
加载包
library(maftools)
读入数据
#path to TCGA LAML MAF file
laml.maf = system.file('extdata', 'tcga_laml.maf.gz', package = 'maftools')
#clinical information containing survival information and histology. This is optional
laml.clin = system.file('extdata', 'tcga_laml_annot.tsv', package = 'maftools')
laml = read.maf(maf = laml.maf,
clinicalData = laml.clin,
verbose = FALSE)
0.1 Including Transition/Transversions into oncoplot
可视化前20个突变基因瀑布图
#By default the function plots top20 mutated genes
oncoplot(maf = laml, draw_titv = TRUE)
0.2 Changing colors for variant classifications
美化图表
#One can use any colors, here in this example color palette from RColorBrewer package is used
vc_cols = RColorBrewer::brewer.pal(n = 8, name = 'Paired')
names(vc_cols) = c(
'Frame_Shift_Del',
'Missense_Mutation',
'Nonsense_Mutation',
'Multi_Hit',
'Frame_Shift_Ins',
'In_Frame_Ins',
'Splice_Site',
'In_Frame_Del'
)
print(vc_cols)
#> Frame_Shift_Del Missense_Mutation Nonsense_Mutation Multi_Hit
#> "#A6CEE3" "#1F78B4" "#B2DF8A" "#33A02C"
#> Frame_Shift_Ins In_Frame_Ins Splice_Site In_Frame_Del
#> "#FB9A99" "#E31A1C" "#FDBF6F" "#FF7F00"
oncoplot(maf = laml, colors = vc_cols, top = 10)
0.3 Including copy number data into oncoplots.
There are two ways one include CN status into MAF. 1. GISTIC results 2. Custom copy number table
0.3.1 GISTIC results
Most widely used tool for copy number analysis from large scale studies is GISTIC and we can simultaneously read gistic results along with MAF. GISTIC generates numerous files but we need mainly four files all_lesions.conf_XX.txt
, amp_genes.conf_XX.txt
, del_genes.conf_XX.txt
, scores.gistic
where XX is confidence level. These files contain significantly altered genomic regions along with amplified and deleted genes respectively.
#GISTIC results LAML
all.lesions =
system.file("extdata", "all_lesions.conf_99.txt", package = "maftools")
amp.genes =
system.file("extdata", "amp_genes.conf_99.txt", package = "maftools")
del.genes =
system.file("extdata", "del_genes.conf_99.txt", package = "maftools")
scores.gis =
system.file("extdata", "scores.gistic", package = "maftools")
#Read GISTIC results along with MAF
laml.plus.gistic = read.maf(
maf = laml.maf,
gisticAllLesionsFile = all.lesions,
gisticAmpGenesFile = amp.genes,
gisticDelGenesFile = del.genes,
gisticScoresFile = scores.gis,
isTCGA = TRUE,
verbose = FALSE,
clinicalData = laml.clin
)
oncoplot(maf = laml.plus.gistic, top = 10)
This plot shows frequent deletions in TP53 gene which is located on one of the significantly deleted locus 17p13.2.
0.3.2 Custom copy-number table
In case there is no GISTIC results available, one can generate a table containing CN status for known genes in known samples. This can be easily created and read along with MAF file.
For example lets create a dummy CN alterations for DNMT3A in random 20 samples.
set.seed(seed = 1024)
barcodes = as.character(getSampleSummary(x = laml)[,Tumor_Sample_Barcode])
#Random 20 samples
dummy.samples = sample(x = barcodes,
size = 20,
replace = FALSE)
#Genarate random CN status for above samples
cn.status = sample(
x = c('Amp', 'Del'),
size = length(dummy.samples),
replace = TRUE
)
custom.cn.data = data.frame(
Gene = "DNMT3A",
Sample_name = dummy.samples,
CN = cn.status,
stringsAsFactors = FALSE
)
head(custom.cn.data)
#> Gene Sample_name CN
#> 1 DNMT3A TCGA-AB-2898 Amp
#> 2 DNMT3A TCGA-AB-2879 Amp
#> 3 DNMT3A TCGA-AB-2920 Del
#> 4 DNMT3A TCGA-AB-2866 Amp
#> 5 DNMT3A TCGA-AB-2892 Amp
#> 6 DNMT3A TCGA-AB-2863 Amp
laml.plus.cn = read.maf(maf = laml.maf,
cnTable = custom.cn.data,
verbose = FALSE)
oncoplot(maf = laml.plus.cn, top = 5)
0.4 Bar plots
leftBarData
, rightBarData
and topBarData
arguments can be used to display additional values as barplots. Below example demonstrates adding gene expression values and mutsig q-values as left and right side bars respectivelly.
#Selected AML driver genes
aml_genes = c("TP53", "WT1", "PHF6", "DNMT3A", "DNMT3B", "TET1", "TET2", "IDH1", "IDH2", "FLT3", "KIT", "KRAS", "NRAS", "RUNX1", "CEBPA", "ASXL1", "EZH2", "KDM6A")
#Variant allele frequcnies (Right bar plot)
aml_genes_vaf = subsetMaf(maf = laml, genes = aml_genes, fields = "i_TumorVAF_WU", mafObj = FALSE)[,mean(i_TumorVAF_WU, na.rm = TRUE), Hugo_Symbol]
colnames(aml_genes_vaf)[2] = "VAF"
head(aml_genes_vaf)
#> Hugo_Symbol VAF
#> 1: ASXL1 37.11250
#> 2: CEBPA 22.00235
#> 3: DNMT3A 43.51556
#> 4: DNMT3B 37.14000
#> 5: EZH2 68.88500
#> 6: FLT3 34.60294
#MutSig results (Right bar plot)
laml.mutsig = system.file("extdata", "LAML_sig_genes.txt.gz", package = "maftools")
laml.mutsig = data.table::fread(input = laml.mutsig)[,.(gene, q)]
laml.mutsig[,q := -log10(q)] #transoform to log10
head(laml.mutsig)
#> gene q
#> 1: FLT3 12.64176
#> 2: DNMT3A 12.64176
#> 3: NPM1 12.64176
#> 4: IDH2 12.64176
#> 5: IDH1 12.64176
#> 6: TET2 12.64176
# oncoplot(
# maf = laml,
# genes = aml_genes,
# leftBarData = aml_genes_vaf,
# leftBarLims = c(0, 100),
# rightBarData = laml.mutsig,
# rightBarLims = c(0, 20)
# )
由于频繁出现报错不存在参数leftBarData
,查看了帮助文档,确实没有这个参数,比较符合的应该是mutsig = NULL
,还未探索到正确的展示方法。先注释出图函数,需要进一步研究。理论上出图效果为:
0.5 Including annotations
Annotations are stored in clinical.data
slot of MAF.
getClinicalData(x = laml)
#> Tumor_Sample_Barcode FAB_classification days_to_last_followup
#> 1: TCGA-AB-2802 M4 365
#> 2: TCGA-AB-2803 M3 792
#> 3: TCGA-AB-2804 M3 2557
#> 4: TCGA-AB-2805 M0 577
#> 5: TCGA-AB-2806 M1 945
#> ---
#> 189: TCGA-AB-3007 M3 1581
#> 190: TCGA-AB-3008 M1 822
#> 191: TCGA-AB-3009 M4 577
#> 192: TCGA-AB-3011 M1 1885
#> 193: TCGA-AB-3012 M3 1887
#> Overall_Survival_Status
#> 1: 1
#> 2: 1
#> 3: 0
#> 4: 1
#> 5: 1
#> ---
#> 189: 0
#> 190: 1
#> 191: 1
#> 192: 0
#> 193: 0
Include FAB_classification
from clinical data as one of the sample annotations.
oncoplot(maf = laml, genes = aml_genes, clinicalFeatures = 'FAB_classification')
More than one annotations can be included by passing them to the argument clinicalFeatures
. Above plot can be further enhanced by sorting according to annotations. Custom colors can be specified as a list of named vectors for each levels.
#Color coding for FAB classification
fabcolors = RColorBrewer::brewer.pal(n = 8,name = 'Spectral')
names(fabcolors) = c("M0", "M1", "M2", "M3", "M4", "M5", "M6", "M7")
fabcolors = list(FAB_classification = fabcolors)
print(fabcolors)
#> $FAB_classification
#> M0 M1 M2 M3 M4 M5 M6
#> "#D53E4F" "#F46D43" "#FDAE61" "#FEE08B" "#E6F598" "#ABDDA4" "#66C2A5"
#> M7
#> "#3288BD"
oncoplot(
maf = laml, genes = aml_genes,
clinicalFeatures = 'FAB_classification',
sortByAnnotation = TRUE,
annotationColor = fabcolors
)
0.6 Highlighting samples
If you prefer to highlight mutations by a specific attribute, you can use additionalFeature
argument.
Example: Highlight all mutations where alt allele is C.
oncoplot(maf = laml, genes = aml_genes,
additionalFeature = c("Tumor_Seq_Allele2", "C"))
Note that first argument (Tumor_Seq_Allele2
) must a be column in MAF file, and second argument (C) is a value in that column. If you want to know what columns are present in the MAF file, use getFields
.
getFields(x = laml)
#> [1] "Hugo_Symbol" "Entrez_Gene_Id"
#> [3] "Center" "NCBI_Build"
#> [5] "Chromosome" "Start_Position"
#> [7] "End_Position" "Strand"
#> [9] "Variant_Classification" "Variant_Type"
#> [11] "Reference_Allele" "Tumor_Seq_Allele1"
#> [13] "Tumor_Seq_Allele2" "Tumor_Sample_Barcode"
#> [15] "Protein_Change" "i_TumorVAF_WU"
#> [17] "i_transcript_name"
0.7 Group by Pathways
Genes can be auto grouped based on their Biological processess by setting pathways = 'auto'
or by providing custom pathway list in the form of a two column tsv
file or a data.frame
containing gene names and their corresponding pathway.
0.7.1 Auto
setting pathways = 'auto'
draws top 3 most affected pathways
# oncoplot(maf = laml, pathways = "auto", gene_mar = 8, fontSize = 0.6)
原教程中这个pathways = "auto"
出现报错,不存在该参数。只找到参数colbar_pathway = FALSE
。
0.7.2 Custom pathways
oncoplot(maf = laml, gene_mar = 8, fontSize = 0.6)
pathways = data.frame(
Genes = c(
"TP53",
"WT1",
"PHF6",
"DNMT3A",
"DNMT3B",
"TET1",
"TET2",
"IDH1",
"IDH2",
"FLT3",
"KIT",
"KRAS",
"NRAS",
"RUNX1",
"CEBPA",
"ASXL1",
"EZH2",
"KDM6A"
),
Pathway = rep(c(
"TSG", "DNAm", "Signalling", "TFs", "ChromMod"
), c(3, 6, 4, 2, 3)),
stringsAsFactors = FALSE
)
head(pathways)
#> Genes Pathway
#> 1 TP53 TSG
#> 2 WT1 TSG
#> 3 PHF6 TSG
#> 4 DNMT3A DNAm
#> 5 DNMT3B DNAm
#> 6 TET1 DNAm
oncoplot(maf = laml, colbar_pathway = T, gene_mar = 8, fontSize = 0.6)
然而更改参数colbar_pathway = T
并未能达到原来的效果,需要进一步学习。
0.8 Combining everything
# oncoplot(
# maf = laml.plus.gistic,
# draw_titv = TRUE,
# pathways = pathways,
# clinicalFeatures = c('FAB_classification', 'Overall_Survival_Status'),
# sortByAnnotation = TRUE,
# additionalFeature = c("Tumor_Seq_Allele2", "C"),
# leftBarData = aml_genes_vaf,
# leftBarLims = c(0, 100),
# rightBarData = laml.mutsig[,.(gene, q)],
# )
汇总所有注释信息绘图结果应该如下图所示,但是由于leftBarData
,rightBarData
,pathways
三个参数可能被更新了,暂时还没能解决。
0.9 SessionInfo
sessionInfo()
#> R version 3.6.1 (2019-07-05)
#> Platform: x86_64-apple-darwin15.6.0 (64-bit)
#> Running under: macOS High Sierra 10.13.6
#>
#> Matrix products: default
#> BLAS: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
#> LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib
#>
#> locale:
#> [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] maftools_2.2.10
#>
#> loaded via a namespace (and not attached):
#> [1] Rcpp_1.0.3 lattice_0.20-38 digest_0.6.23
#> [4] R.methodsS3_1.7.1 grid_3.6.1 magrittr_1.5
#> [7] evaluate_0.14 rlang_0.4.5 stringi_1.4.3
#> [10] data.table_1.12.6 R.oo_1.23.0 R.utils_2.9.0
#> [13] Matrix_1.2-17 wordcloud_2.6 rmarkdown_2.1
#> [16] splines_3.6.1 RColorBrewer_1.1-2 tools_3.6.1
#> [19] stringr_1.4.0 xfun_0.10 yaml_2.2.0
#> [22] survival_2.44-1.1 compiler_3.6.1 htmltools_0.4.0
#> [25] knitr_1.25
参考学习资料:http://www.bioconductor.org/packages/release/bioc/vignettes/maftools/inst/doc/oncoplots.html