Deep-Learning-with-PyTorch-3.6 张量API

3.6 张量API

至此,我们知道了什么是PyTorch张量以及它们是如何在幕后工作的。在总结之前,值得一看的是PyTorch提供的张量操作。 将它们全部列出在这里几乎没有用。 相反,我们将大致了解该API,并在http://pytorch.org/docs的在线文档中找到有关在何处查找内容的一些指导。

首先,在torch模块中可以进行张量及其之间的绝大多数操作,这些操作也可以称为张量对象的方法。 例如,我们先前遇到的transpose函数可以从torch模块中使用

# In[71]:
a = torch.ones(3, 2)
a_t = torch.transpose(a, 0, 1)

a.shape, a_t.shape

# Out[71]:
(torch.Size([3, 2]), torch.Size([2, 3]))

或作为张量的方法:

# In[72]:
a = torch.ones(3, 2)
a_t = a.transpose(0, 1)

a.shape, a_t.shape

# Out[72]:
(torch.Size([3, 2]), torch.Size([2, 3]))

两种形式之间没有区别; 它们可以互换使用。

我们之前提到过在线文档(http://pytorch.org/docs)。 它们是详尽且井井有条的,将张量操作分为几组:

1、创建操作-用于构建张量的函数,例如张量和from_numpy

2、索引,切片,连接,改变操作-更改张量的形状,步幅或内容的功能,例如转置(transpose)。

3、数学操作-用于通过计算处理张量的内容的函数。
(1)逐点运算-通过将函数分别应用于每个元素(例如abs和cos)来获得新张量的函数

(2)约简运算-通过遍历张量(例如均值(mean),标准差(std)和范数(norm))来计算聚合值的函数

(3)比较运算-用于评估张量上的数字谓词的函数,例如equal和max

(4)频谱操作-用于转换频域并在频域中运行的功能,例如stft和hamming_window

(5)其他运算-在向量上运算的特殊函数,例如叉(cross)或矩阵,例如迹线(trace)

(6)BLAS和LAPACK运算-遵循基本线性代数子程序(BLAS)规范的函数,用于标量,矢量-矢量,矩阵-矢量和矩阵-矩阵运算

4、随机抽样-通过从概率分布(如randn和noraml)中随机抽取来生成值的函数

5、序列化-保存和加载张量的功能,例如加载(load)和保存(save)

6、并行性-用于控制并行CPU执行的线程数的函数,例如set_num_threads

花一些时间来使用常规张量API。 本章提供了启用这种交互式探索的所有先决条件。 从下一章开始,随着本书的进行,我们还将遇到一些张量运算。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342