什么是SVM?

什么是SVM?

当然首先看一下wiki.

Support Vector Machinesare learning models used for classification: which individuals in a population belong where? So… how do SVM and the mysterious “kernel” work?

好吧,故事是这样子的:

在很久以前的情人节,大侠要去救他的爱人,但魔鬼和他玩了一个游戏。

魔鬼在桌子上似乎有规律放了两种颜色的球,说:“你用一根棍分开它们?要求:尽量在放更多球之后,仍然适用。”

<img src="https://pic2.zhimg.com/5aff2bcdbe23a8c764a32b1b5fb13b71_b.png" data-rawwidth="300" data-rawheight="225" class="content_image" width="300">

于是大侠这样放,干的不错?

<img src="https://pic2.zhimg.com/3dbf3ba8f940dfcdaf877de2d590ddd1_b.png" data-rawwidth="300" data-rawheight="225" class="content_image" width="300">

然后魔鬼,又在桌上放了更多的球,似乎有一个球站错了阵营。

<img src="https://pic4.zhimg.com/0b2d0b26ec99ee40fd14760350e957af_b.png" data-rawwidth="300" data-rawheight="225" class="content_image" width="300">

SVM就是试图把棍放在最佳位置,好让在棍的两边有尽可能大的间隙。

<img src="https://pic2.zhimg.com/4b9e8a8a87c7982c548505574c13dc05_b.png" data-rawwidth="300" data-rawheight="225" class="content_image" width="300">

现在即使魔鬼放了更多的球,棍仍然是一个好的分界线。

<img src="https://pic4.zhimg.com/7befaafc45763b9c4469abf245dc98cb_b.png" data-rawwidth="300" data-rawheight="225" class="content_image" width="300">

然后,在SVM 工具箱中有另一个更加重要的trick。 魔鬼看到大侠已经学会了一个trick,于是魔鬼给了大侠一个新的挑战。

<img src="https://pic4.zhimg.com/558161d10d1f0ffd2d7f9a46767de587_b.png" data-rawwidth="300" data-rawheight="225" class="content_image" width="300">

现在,大侠没有棍可以很好帮他分开两种球了,现在怎么办呢?当然像所有武侠片中一样大侠桌子一拍,球飞到空中。然后,凭借大侠的轻功,大侠抓起一张纸,插到了两种球的中间。

<img src="https://pic4.zhimg.com/55d7ad2a6e23579b17aec0c3c9135eb3_b.png" data-rawwidth="300" data-rawheight="167" class="content_image" width="300">

现在,从魔鬼的角度看这些球,这些球看起来像是被一条曲线分开了。

<img src="https://pic3.zhimg.com/e5d5185561a4d5369f36a9737fc849c6_b.png" data-rawwidth="300" data-rawheight="225" class="content_image" width="300">

再之后,无聊的大人们,把这些球叫做「data」,把棍子 叫做「classifier」, 最大间隙trick 叫做「optimization」, 拍桌子叫做「kernelling」, 那张纸叫做「hyperplane」。

图片来源:Support Vector Machines explained well

直观感受看:https://www.youtube.com/watch?v=3liCbRZPrZA

<img src="https://pic4.zhimg.com/3a05c21b8fbb9c4cb8198815ec6a3fd7_b.png" data-rawwidth="1280" data-rawheight="800" class="origin_image zh-lightbox-thumb" width="1280" data-original="https://pic4.zhimg.com/3a05c21b8fbb9c4cb8198815ec6a3fd7_r.png">

<img src="https://pic1.zhimg.com/dd8facea0b915fedf9c3690ce67f6cf8_b.png" data-rawwidth="2560" data-rawheight="1600" class="origin_image zh-lightbox-thumb" width="2560" data-original="https://pic1.zhimg.com/dd8facea0b915fedf9c3690ce67f6cf8_r.png">

<img src="https://pic4.zhimg.com/c76fafd31978db1744e6286e276fe25b_b.png" data-rawwidth="2560" data-rawheight="1600" class="origin_image zh-lightbox-thumb" width="2560" data-original="https://pic4.zhimg.com/c76fafd31978db1744e6286e276fe25b_r.png">

<img src="https://pic2.zhimg.com/71bd4dfd0a59b50fd1a06523dd281425_b.png" data-rawwidth="2560" data-rawheight="1600" class="origin_image zh-lightbox-thumb" width="2560" data-original="https://pic2.zhimg.com/71bd4dfd0a59b50fd1a06523dd281425_r.png">

<img src="https://pic3.zhimg.com/169230b78232b9e73780174bae2afa86_b.png" data-rawwidth="2560" data-rawheight="1600" class="origin_image zh-lightbox-thumb" width="2560" data-original="https://pic3.zhimg.com/169230b78232b9e73780174bae2afa86_r.png">

<img src="https://pic1.zhimg.com/c8f830648ec0a24419ff3c68e9b65484_b.png" data-rawwidth="2560" data-rawheight="1600" class="origin_image zh-lightbox-thumb" width="2560" data-original="https://pic1.zhimg.com/c8f830648ec0a24419ff3c68e9b65484_r.png">

<img src="https://pic2.zhimg.com/19236d74e67a4e1ea804f6f4d47e8dcd_b.png" data-rawwidth="2560" data-rawheight="1600" class="origin_image zh-lightbox-thumb" width="2560" data-original="https://pic2.zhimg.com/19236d74e67a4e1ea804f6f4d47e8dcd_r.png">

<img src="https://pic1.zhimg.com/c18864b0ecfe9bf8e9b8d6001b5bbf7c_b.png" data-rawwidth="2560" data-rawheight="1600" class="origin_image zh-lightbox-thumb" width="2560" data-original="https://pic1.zhimg.com/c18864b0ecfe9bf8e9b8d6001b5bbf7c_r.png">

<img src="https://pic4.zhimg.com/7c19253df763e678cd6377cbfdabc01f_b.png" data-rawwidth="2560" data-rawheight="1600" class="origin_image zh-lightbox-thumb" width="2560" data-original="https://pic4.zhimg.com/7c19253df763e678cd6377cbfdabc01f_r.png">

<img src="https://pic3.zhimg.com/87aa4bb4e046b75e37f05b369304b58a_b.png" data-rawwidth="2560" data-rawheight="1600" class="origin_image zh-lightbox-thumb" width="2560" data-original="https://pic3.zhimg.com/87aa4bb4e046b75e37f05b369304b58a_r.png">

<img src="https://pic3.zhimg.com/cc891d721ee902434f362821091bc496_b.png" data-rawwidth="2560" data-rawheight="1600" class="origin_image zh-lightbox-thumb" width="2560" data-original="https://pic3.zhimg.com/cc891d721ee902434f362821091bc496_r.png">

<img src="https://pic3.zhimg.com/474312c10e1f681f3ff9f928aa59dfaa_b.png" data-rawwidth="2560" data-rawheight="1600" class="origin_image zh-lightbox-thumb" width="2560" data-original="https://pic3.zhimg.com/474312c10e1f681f3ff9f928aa59dfaa_r.png">

参考:

Please explain Support Vector Machines (SVM) like I am a 5 year old. : MachineLearning

Support Vector Machines explained well

https://www.youtube.com/watch?v=3liCbRZPrZA

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,864评论 6 494
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,175评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,401评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,170评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,276评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,364评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,401评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,179评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,604评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,902评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,070评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,751评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,380评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,077评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,312评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,924评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,957评论 2 351

推荐阅读更多精彩内容