论文阅读

  • 2013 NIPS - More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server

to be read
分布式方法还是主要基于传统的 Parameter Server 对 Worker 的形式,但是提出了一种 SSP(Stale Synchronous Parallel) 模型来解决普通的同步或者异步模式下训练会有的问题。SSP 模型大致是说会在本地维护一个参数的 cache,每个工作的 node 直接从本地的 cache 中拿数据,跟 PS 之间的同步问题应该是另外处理,这样就把每个工作 node 等待网络的时间给降下来了。

  • 2016 Eurosys - GeePS: Scalable Deep Learning on Distributed GPUs with a GPU-Specialized Parameter Server

to be read.
专门为gpu做的一套ps机制。主要针对 GPU 做了特别的优化和改进,克服了数据并行和模型并行,BSP 和异步这些老方法中存在的问题,最终结果性能爆炸。GeePS 还支持在卡上跑超过显存容量的网络,直接解决了对模型并行的需求。
主要看点:

  1. GPU PS与CPU PS为什么会有不同。
  2. 把parameter cache放到GPU mem可以节省多少通信量。
  3. GPU内存池
  4. 对 PS 模式下异步方式的思考,虽说把 BSP 改成异步的可以增加计算资源的利用率,但是收敛速度会放慢是肯定的,之前的不少研究也是在这两个方面作了取舍,才能让最终训练到相同效果的总体时间更短。这篇文章在同步延迟能够保证的情况下,测试结果偏向于用 BSP 收敛效果会更好。
    相关资料:
    http://jcf94.com/2017/12/20/2017-12-20-distributeddl/
    http://www.uuudoc.com/doc/1D1J1B1C1E1D1D1B1C1L1B1F1J1D1D1F1G1H1K2N1I1E1K1D1L1I1L1D1G.html
  • 2017 Facebook - Accurate, Large Minibatch SGD Training ImageNet in 1 Hour

Linear Scaling Rule:minibatch 扩大 k 倍,学习率也扩大 k 倍。

相关资料:https://www.zhihu.com/question/60874090/answer/181413785

  • Google 的 Rethinking synchronized sgd

数学上,sync sgd 比 async 常常更加稳定

MPI vs Parameter

  • 2012 NIPS - Large Scale Distributed Deep Networks

Douwnpour SGD


image.png

几个关键点:

  1. 参数服务器是分布式的,每个节点负责一部分参数
  2. 每个model replicas 负责不同的data shards(这不就是数据并行吗。。。),每次训练处理一个mini-batch
  3. 每个mini-batch前,各个model replicas去找参数服务器更新自己的参数
  4. 为了减小通信量,Downpour SGD引入了一种延迟更新的机制,每隔几个step才会push和pull参数。
  5. 采用Adagrad自适应学习率
    资料:https://blog.csdn.net/itplus/article/details/31831661
  • 2013 ICML - Deep Learning with COTS HPC

基于IB和MPI的HPC构建了一个系统,可以在16个节点上运行一个11B的大型神经网络,使大型神经网络可以更好的被实现。
关键点:

  1. 基于cuda写了一些基础的数学运算。
  2. 使用了强模型并行,所有GPU一起做同一个batch的计算。
  3. 写了一套在gpu上做模型并行的逻辑。。。很遗憾没有看懂
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,544评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,430评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,764评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,193评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,216评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,182评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,063评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,917评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,329评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,543评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,722评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,425评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,019评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,671评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,825评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,729评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,614评论 2 353

推荐阅读更多精彩内容