TCP&UDP传输详解

计算机网络七层模型中,传输层有两个重要的协议:
(1)用户数据报协议UDP (User Datagram Protocol)
(2)传输控制协议TCP (Transmission Control Protocol)

UDP 在传送数据之前不需要先建立连接。远地主机的运输层在收到UDP 报文后,不需要给出任何确认。虽然UDP 不提供可靠交付,但在某些情况下UDP 却是一种最有效的工作方式。

TCP 则提供面向连接的服务。在传送数据之前必须先建立连接,数据传送结束后要释放连接。TCP 不提供广播或多播服务。由于TCP 要提供可靠的、面向连接的运输服务,因此不可避免地增加了许多的开销,如确认、流量控制、计时器以及连接管理等。

用户数据报协议UDP

1 UDP 概述

UDP 的主要特点是:

1、UDP 是无连接的,即发送数据之前不需要建立连接。
2、UDP 使用尽最大努力交付,即不保证可靠交付,同时也不使用拥塞控制。
3、UDP 是面向报文的。UDP 没有拥塞控制,很适合多媒体通信的要求。
4、UDP 支持一对一、一对多、多对一和多对多的交互通信。
5、UDP 的首部开销小,只有 8 个字节。

  • UDP 是无连接的
    即发送数据之前不需要建立连接,因此减少了开销和发送数据之前的时延。

  • UDP 使用尽最大努力交付
    即不保证可靠交付,因此主机不需要维持复杂的连接状态表(这里面有许多参数)。

  • UDP 是面向报文的
    UDP 对应用层交下来的报文,既不合井,也不拆分,而是保留这些报文的边界。这就是说,应用层交给UDP 多长的报文, UDP 就照样发送,即一次发送一个报文。因此应用程序必须选择合适大小的报文。若报文太长, UDP 把它交给IP 层后, IP 层在传送时可能要进行分片,这会降低IP 层的效率。反之,若报文太短, UDP 把它交给IP 层后,会使IP 数据报的首部的相对长度太太,这也降低了IP 层的效率。

  • 发送方 UDP 对应用程序交下来的报文,在添加首部后就向下交付 IP 层。UDP 对应用层交下来的报文,既不合并,也不拆分,而是保留这些报文的边界。

  • 应用层交给 UDP 多长的报文,UDP 就照样发送,即一次发送一个报文。

  • 接收方 UDP 对 IP 层交上来的 UDP 用户数据报,在去除首部后就原封不动地交付上层的应用进程,一次交付一个完整的报文。

  • 应用程序必须选择合适大小的报文

image.png

2 UDP 的首部格式

首部手段很简单,只有8 个字节,由四个字段组成,每个字段的长度都是两个字节。

  • 源端口
    在需要对方回信时选用。不需要时可用全0 。
  • 目的端口
    这在终点交付报文时必须要使用到。
  • 长度
    UDP 用户数据报的长度,其最小值是8 (仅有首部)。
  • 检验和
    检测UDP 用户数据报在传输中是否有错。有错就去弃。
UDP的首部格式

在计算检验和时,临时把“伪首部”和 UDP 用户数据报连接在一起。伪首部仅仅是为了计算检验和。

image.png

传输控制协议TCP

1 TCP 最主要的特点

1、 TCP 是面向连接的运输层协议。
2、每一条 TCP 连接只能有两个端点(endpoint),每一条 TCP 连接只能是点对点的(一对一)。
3、TCP 提供可靠交付的服务。
4、TCP 提供全双工通信。
5、面向字节流。

  • TCP 是面向连接的运输层协议
    这就是说,应用程序在使用TCP 协议之前,必须先建立TCP 连接。在传送数据完毕后,必须释放已经建立的TCP 连接。
  • 每一条TCP 连接只能是点对点的
  • TCP 提供可靠交付的服务
    也就是说,通过TCP 连接传送的数据,无差错、不丢失、不重复、并且按序到达。
  • TCP 提供全双工通信
    TCP 允许通信双方的应用进程在任何时候都能发送数据。TCP 连接的两端都设有发送缓存和接收缓存,用来临时存放双向通信的数据。在发送时,应用程序在把数据传送给TCP 的缓存后,就可以做自己的事,而TCP 在合适的时候把数据发送出去。在接收时, TCP 把收到的数据放入缓存,上层的应用进程在合适的时候读取缓存中的数据。
  • 面向字节流
    “面向字节流”的含义是:虽然应用程序和TCP 的交互是一次一个数据块(大小不等),但TCP 把应用程序交下来的数据看成仅仅是一连串的无结构的字节流。TCP 并不知道所传送的字节流的含义。
TCP面向流的概念.png

2 TCP 的连接

前面已经讲过,每条TCP 连接有两个端点,TCP 连接的端点叫做套接字(socket)或插口。套接字格式如下:

套接字 socket= (IP 地址:端口号)

每一条TCP 连接唯一地被通信两端的两个端点(即两个套接宇)所确定。即:
TCP 连接= {socket1, socket2} = {(IP1: port1), (IP2: port2)}

3次握手链接

  • 第一次握手
    当客户端向服务器发起连接请求时,客户端会发送同步序列标号SYN到服务器,在这里我们设SYN为m,等待服务器确认,这时客户端的状态为SYN_SENT。
  • 第二次握手
    当服务器收到客户端发送的SYN后,发送确认包ACK,这里的ACK为m+1,意思是说“我收到了你发送的SYN了”,同时,服务器也会向客户端发送一个SYN包,这里我们设SYN为n。这时服务器的状态为SYN_RECV。
  • 第三次握手
    客户端收到服务器发送的SYN和ACK包后,需向服务器发送确认包ACK,这里的ACK为n+1,发送完毕后,客户端和服务器的状态为ESTABLISH,即TCP连接成功。
TCP三次握手.png

4次握手释放链接

断开连接请求可以由客户端发出,也可以由服务器端发出,在这里我们称A端向B端请求断开连接。

  • 第一次挥手
    A端向B端请求断开连接时会向B端发送一个带有FIN标记的报文段
  • 第二次挥手
    B端收到A发送的FIN后,B段现在可能现在还有数据没有传完,所以B端并不会马上向A端发送FIN,而是先发送一个确认序号ACK,意思是说“你发的断开连接请求我收到了,但是我现在还有数据没有发完,请稍等一下呗”。
  • 第三次挥手
    当B端的事情忙完了,那么此时B端就可以断开连接了,此时B端向A端发送FIN序号,意思是这次可以断开连接了。
  • 第四次挥手
    A端收到B端发送的FIN后,会向B端发送确认ACK,然后经过两个MSL时长后断开连接。
TCP四次挥手.png

各个状态节点解释如下:

  • FIN_WAIT_1:
    FIN_WAIT_1和FIN_WAIT_2状态的真正含义都是表示等待对方的FIN报文。而这两种状态的区别是:FIN_WAIT_1状态实际上是当SOCKET在ESTABLISHED状态时,它想主动关闭连接,向对方发送了FIN报文,此时该SOCKET即进入到FIN_WAIT_1状态。而当对方回应ACK报文后,则进入到FIN_WAIT_2状态,当然在实际的正常情况下,无论对方何种情况下,都应该马上回应ACK报文,所以FIN_WAIT_1状态一般是比较难见到的,而FIN_WAIT_2状态还有时常常可以用netstat看到。(主动方)
  • CLOSE_WAIT
    这种状态的含义其实是表示在等待关闭。怎么理解呢?当对方close一个SOCKET后发送FIN报文给自己,你系统毫无疑问地会回应一个ACK报文给对方,此时则进入到CLOSE_WAIT状态。接下来呢,实际上你真正需要考虑的事情是察看你是否还有数据发送给对方,如果没有的话,那么你也就可以 close这个SOCKET,发送FIN报文给对方,也即关闭连接。所以你在CLOSE_WAIT状态下,需要完成的事情是等待你去关闭连接。(被动方)
  • FIN_WAIT_2
    上面已经详细解释了这种状态,实际上FIN_WAIT_2状态下的SOCKET,表示半连接,也即有一方要求close连接,但另外还告诉对方,我暂时还有点数据需要传送给你(ACK信息),稍后再关闭连接。(主动方)
  • LAST_ACK
    这个状态还是比较容易好理解的,它是被动关闭一方在发送FIN报文后,最后等待对方的ACK报文。当收到ACK报文后,也即可以进入到CLOSED可用状态了。(被动方)
  • TIME_WAIT
    表示收到了对方的FIN报文,并发送出了ACK报文,就等2MSL后即可回到CLOSED可用状态了。如果FIN_WAIT_1状态下,收到了对方同时带FIN标志和ACK标志的报文时,可以直接进入到TIME_WAIT状态,而无须经过FIN_WAIT_2状态。(主动方)
  • CLOSED
    表示连接中断。

TCP可靠传输的工作原理

1 停止等待协议

下面为了讨论问题的万便,我们仅考虑A发送数据而B 接收数据并发送确认。因此A 叫做发送方,而B 叫做接收方。

“停止等待”就是每发送完一个分组就停止发送,等待对方的确认。在收到确认后再发送下一个分组。

  • 无差错情况
    A 发送分组M1,发完就暂停发送,等待B 的确认。B 收到了M1 就向A 发送确认。A 在收到了对M1的确认后,就再发送下一个分组M2。同样,在收到B 对M2的确认后,再发送M3
无差错情况.png
  • 超时重传
    B 接收M1时检测出了差错就丢弃M1,其他什么也不做(不通知A 收到有差错的分组户。也可能是M1 在传输过程中丢失了,这时B 当然什么都不知道。在这两种情况下, B都不会发送任何信息。可靠传输协议是只要超过了一段时间仍然没有收到确认,就认为刚才发送的分组丢失了,因而重传前面发送过的分组。这就叫做超时重传。要实现超时重传,就要在每发送完一个分组设置一个超时计时器。如果在超时计时器到期之前收到了对方的确认,就撤销己设置的超时计时器。
超时重传.png
  • 确认丢失
    B所发送的对M1的确认丢失了。A在设定的超时重传时间内没有收到确认,因此A 在超时计时器到期后就要重传M1。现在应注意B的动作。假定B又收到了重传的分组M1。这时应采取两个行动:
    (1)丢弃重复的M1
    (2)重新发送确认
确认丢失.png
  • 确认超时
    传输过程中没有出现差错,但B 对分组M1 的确认迟到了。A 会收到重复的确认。对重复的确认的处理很简单:收下后就丢弃。B 仍然会收到重复的M1 ,并且同样要丢弃重复的M1 ,并重传确认分组。
确认超时.png

使用上述的确认和重传机制,我们就可以在不可靠的传输网络上实现可靠的通信。像上述的这种可靠传输协议常称为自动重传请求ARQ (Automatic Repeat reQuest)。意思是重传的请求是自动进行的。接收方不需要请求发送方重传某个出错的分组。

2 连续ARQ协议

滑动窗口协议比较复杂,是TCP 协议的精髓所在。这里先给出连续ARQ 协议最基本的概念,但不涉提到许多细节问题。详细的滑动窗口协议将在后面讨论。

下图表示发送方维持的发送窗口,它的意义是:位于发送窗口内的5 个分组都可连续发送出去,而不需要等待对方的确认。这样,信道利用率就提高了。

连续ARQ协议工作原理.png

连续ARQ 协议规定,发送方每收到一个确认,就把发送窗口向前滑动一个分组的位置。

接收方一般都是采用累积确认的方式。这就是说,接收方不必对收到的分组逐个发送确认,而是可以在收到几个分组后,对按序到达的最后一个分组发送确认,这样就表示:到这个分组为止的所有分组都己正确收到了。

累积确认的优点是容易实现,即使确认丢失也不必重传。但缺点是不能向发送方反映出接收方己经正确收到的所有分组的信息。

例如,如果发送方发送了前5 个分组,而中间的第3 个分组丢失了。这时接收方只能对前两个分组发出确认。发送方无法知道后面三个分组的下落,而只好把后面的三个分组都再重传一次。这就叫做Go-back-N (回退N ),表示需要再退回来重传己发送过的N 个分组。可见当通信线路质量不好时,连续ARQ 协议会带来负面的影响。

TCP报文格式

image.png
  • 源端口和目的端口各占2 个宇节,分别写入源端口号和目的端口号。
  • 序号
    占4 宇节,TCP 是面向字节流的。在一个TCP 连接中传送的宇节流中的每一个字节都按顺序编号。首部中的序号字段值则指的是本报文段所发送的数据的第一个字节的序号。例如,一报文段的序号字段值是301 ,而携带的数据共有100字节。这就表明:本报文段的数据的第一个字节的序号是301 ,最后一个字节的序号是400。
  • 确认号
    占4 字节,是期望收到对方下一个报文段的第一个数据字节的序号。例如, B 正确收到了A 发送过来的一个报文段,其序号字段值是501 ,而数据长度是200 宇节(序号501 ~ 700 ),这表明B 正确收到了A 发送的到序号700 为止的数据。因此, B 期望收到A 的下一个数据序号是701 ,于是B 在发送给A 的确认报文段中把确认号置为701 。
  • 数据偏移(即首部长度)——占 4 位,它指出 TCP 报文段的数据起始处距离 TCP 报文段的起始处有多远。“数据偏移”的单位是 32 位字(以 4 字节为计算单位)。
  • 保留字段——占 6 位,保留为今后使用,但目前应置为 0。
  • 紧急 URG —— 当 URG  1 时,表明紧急指针字段有效。它告诉系统此报文段中有紧急数据,应尽快传送(相当于高优先级的数据)。

  • 确认 ACK —— 只有当 ACK  1 时确认号字段才有效。当 ACK  0 时,确认号无效。

  • 推送 PSH (PuSH) —— 接收 TCP 收到 PSH = 1 的报文段,就尽快地交付接收应用进程,而不再等到整个缓存都填满了后再向上交付。

  • 复位 RST (ReSeT) —— 当 RST  1 时,表明 TCP 连接中出现严重差错(如由于主机崩溃或其他原因),必须释放连接,然后再重新建立运输连接。

  • 同步 SYN —— 同步 SYN = 1 表示这是一个连接请求或连接接受报文。

  • 终止 FIN (FINis) —— 用来释放一个连接。FIN  1 表明此报文段的发送端的数据已发送完毕,并要求释放运输连接。

  • 窗口
    占2 字节,窗口指的是发送本报文段的一方的接收窗口(而不是自己的发送窗口)。窗口值告诉对方:从本报文段首部中的确认号算起,接收方目前允许对方发送的数据量。例如,设确认号是701 ,窗口字段是1000。这就表明,从701 号算起,发送此报文段的一方还有接收1000 个字节数据(字节序号是701 - 1700 )的接收缓存空间。
    总之,窗口字段明确指出了现在允许对方发送的数据量。窗口值是经常在动态变化着。

TCP 可靠传输的实现——以字节为单位的滑动窗口

1 以字节为单位的滑动窗口

TCP 的滑动窗口是以字节为单位的。现假定A 收到了B 发来的确认报文段,其中窗口是20 (字节),而确认号是31 (这表明B 期望收到的下一个序号是31 ,而序号30 为止的数据己经收到了)。根据这两个数据, A 就构造出自己的发送窗口,其位置如图所示。

根据B给出的窗口值,A构造出自己的发送窗口.png

发送窗口表示:在没有收到B 的确认的情况下, A可以连续把窗口内的数据都发送出去。凡是己经发送过的数据,在未收到确认之前都必须暂时保留,以便在超时重传时使用。

发送窗口后沿的后面部分表示己发送且己收到了确认。这些数据显然不需要再保留了。而发送窗口前沿的前面部分表示不允许发送的,因为接收方都没有为这部分数据保留临时存放的缓存空间。

现在假定A 发送了序号为31 ~ 41 的数据。这时发送窗口位置并未改变,但发送窗口内靠后面有11个字节(灰色小方框表示)表示己发送但未收到确认。而发送窗口内靠前面的9 个字节( 42 ~ 50 )是允许发送但尚未发送的。】

A的发送窗口.png

再看一下B 的接收窗口。B 的接收窗口大小是20,在接收窗口外面,到30 号为止的数据是已经发送过确认,并且己经交付给主机了。因此在B 可以不再保留这些数据。接收窗口内的序号(31~50)足允许接收的。B 收到了序号为32 和33 的数据,这些数据没有按序到达,因为序号为31 的数据没有收到(也许丢失了,也许滞留在网络中的某处)。请注意, B 只能对按序收到的数据中的最高序号给出确认,因此B 发送的确认报文段中的确认号仍然是31 (即期望收到的序号)。

B的接收窗口.png

现在假定B 收到了序号为31 的数据,并把序号为31~33的数据交付给主机,然后B删除这些数据。接着把接收窗口向前移动3个序号,同时给A 发送确认,其中窗口值仍为20,但确认号是34,这表明B 已经收到了到序号33 为止的数据。我们注意到,B还收到了序号为37, 38 和40 的数据,但这些都没有按序到达,只能先存在接收窗口。A收到B的确认后,就可以把发送窗口向前滑动3个序号,指针P2 不动。可以看出,现在A 的可用窗口增大了,可发送的序号范围是42~53。整个过程如下图:

A收到新的确认号,发送窗口向前滑动.png

A 在继续发送完序号42-53的数据后,指针P2向前移动和P3重合。发送窗口内的序号都已用完,但还没有再收到确认。由于A 的发送窗口己满,可用窗口己减小到0,因此必须停止发送。

发送窗口内的序号都属于已发送但未被确认.png

2 超时重传时间的选择

上面已经讲到, TCP 的发送方在规定的时间内没有收到确认就要重传已发送的报文段。这种重传的概念是很简单的,但重传时间的选择却是TCP 最复杂的问题之一。

TCP采用了一种自适应算法,它记录一个报文段发出的时间,以及收到相应的确认的时间。这两个时间之差就是报文段的往返时间RTT,TCP 保留了RTT的一个加权平均往返时间RTTs (这又称为平滑的往返时间, S 表示Smoothed 。因为进行的是加权平均,因此得出的结果更加平滑)。每当第一次测量到RTT样本时, RTTs值就取为所测量到的RTT样本值。但以后每测量到一个新的RTT样本,就按下式重新计算一次RTTs:

新的RTTs = (1 - α)×(旧的RTTs) + α ×(新的RTT样本)

α 越大表示新的RTTs受新的RTT样本的影响越大。推荐的α 值为0.125,用这种方法得出的加权平均往返时间RTTs 就比测量出的RTT值更加平滑。

显然,超时计时器设置的超时重传时间RTO (RetransmissionTime-Out)应略大于上面得出的加权平均往返时间RTTs。RFC 2988 建议使用下式计算RTO:

RTO = RTTs + 4 × RTTd

RTTd是RTT 的偏差的加权平均值,它与RTTs和新的RTT样本之差有关。计算公式如下:

新的RTTd= (1- β)×(旧的RTTd) + β × |RTTs-新的RTT样本|

发现问题:如图所示,发送出一个报文段。设定的重传时间到了,还没有收到确认。于是重
传报文段。经过了一段时间后,收到了确认报文段。现在的问题是:如何判定此确认报文段是对先发送的报文段的确认,还是对后来重传的报文段的确认?

收到的确认是对哪一个报文段的确认?.png

若收到的确认是对重传报文段的确认,但却被源主机当成是对原来的报文段的确认,则这样计算出的RTTs 和超时重传时间RTO 就会偏大。若后面再发送的报文段又是经过重传后才收到确认报文段,则按此方法得出的超时重传时间RTO 就越来越长。

若收到的确认是对原来的报文段的确认,但被当成是对重传报文段的确认,则由此计算出的RTTs 和RTO 都会偏小。这就必然导致报文段过多地重传。这样就有可能使RTO 越来越短。

Kam 提出了一个算法:在计算加权平均RTTs 时,只要报文段重传了就不采用其往返时间样本。这样得出的加权平均RTTs 和RTO 就较准确。

新问题:设想出现这样的情况:报文段的时延突然增大了很多。因此在原来得出的重传时间内,不会收到确认报文段。于是就重传报文段。但根据Kam 算法,不考虑重传的报文段的往返时间样本。这样,超时重传时间就无法更新。

解决方案:对Kam 算法进行修正,方法是z报文段每重传一次,就把超时重传时间RTO 增大一些。典型的做法是取新的重传时间为2 倍的旧的重传时间。当不再发生报文段的重传时,才根据上面给出的公式计算超时重传时间。

TCP 的流量控制

1 利用滑动窗口实现流量控制

流量控制(flow control)就是让发送方的发送速率不要太快,要让接收方来得及接收。

利用滑动窗口机制可以很方便地在TCP 连接上实现对发送方的流量控制。

利用可变窗口进行流量控制举例.png

接收方的主机B 进行了三次流量控制。第一次把窗口减小到rwnd =300,第二次又减到rwnd = 100 ,最后减到rwnd = 0 ,即不允许发送方再发送数据了。这种使发送方暂停发送的状态将持续到主机B 重新发出一个新的窗口值为止。我们还应注意到,B 向A 发送的三个报文段都设置了ACK=1,只有在ACK=1 时确认号字段才有意义。

发生死锁:现在我们考虑一种情况。上图中, B 向A 发送了零窗口的报文段后不久, B 的接收缓存又有了一些存储空间。于是B 向A 发送了rwnd = 400 的报文段。然而这个报文段在传送过程中丢失了。A 一直等待收到B 发送的非零窗口的通知,而B 也一直等待A 发送的数据。如果没有其他措施,这种互相等待的死锁局面将一直延续下去。

解决方案:TCP 为每一个连接设有一个持续计时器(persistence timer)。只要TCP 连接的一方收到对方的零窗口通知,就启动持续计时器。若持续计时器设置的时间到期,就发送一个零窗口探测报文段(仅携带1 宇节的数据),而对方就在确认这个探测报文段时给出了现在的窗口值。

2.必须考虑传输效率

可以用不同的机制来控制 TCP 报文段的发送时机:

  • 第一种机制是 TCP 维持一个变量,它等于最大报文段长度 MSS。只要缓存中存放的数据达到 MSS 字节时,就组装成一个 TCP 报文段发送出去。
  • 第二种机制是由发送方的应用进程指明要求发送报文段,即 TCP 支持的推送(push)操作。
  • 第三种机制是发送方的一个计时器期限到了,这时就把当前已有的缓存数据装入报文段(但长度不能超过 MSS)发送出去。

TCP的拥塞控制

1.拥塞控制的一般原理

  • 在某段时间,若对网络中某资源的需求超过了该资源所能提供的可用部分,网络的性能就要变坏——产生拥塞(congestion)。
  • 出现资源拥塞的条件:
    • 对资源需求的总和 > 可用资源
  • 若网络中有许多资源同时产生拥塞,网络的性能就要明显变坏,整个网络的吞吐量将随输入负荷的增大而下降。

拥塞控制与流量控制的关系:

  • 拥塞控制所要做的都有一个前提,就是网络能够承受现有的网络负荷。
  • 拥塞控制是一个全局性的过程,涉及到所有的主机、所有的路由器,以及与降低网络传输性能有关的所有因素。
  • 流量控制往往指在给定的发送端和接收端之间的点对点通信量的控制。
  • 流量控制所要做的就是抑制发送端发送数据的速率,以便使接收端来得及接收。

拥塞控制的一般原理:

  • 拥塞控制是很难设计的,因为它是一个动态的(而不是静态的)问题。
  • 当前网络正朝着高速化的方向发展,这很容易出现缓存不够大而造成分组的丢失。但分组的丢失是网络发生拥塞的征兆而不是原因。
  • 在许多情况下,甚至正是拥塞控制本身成为引起网络性能恶化甚至发生死锁的原因。这点应特别引起重视。

开环控制和闭环控制:

  • 开环控制方法就是在设计网络时事先将有关发生拥塞的因素考虑周到,力求网络在工作时不产生拥塞。
  • 闭环控制是基于反馈环路的概念。属于闭环控制的有以下几种措施:
    • 监测网络系统以便检测到拥塞在何时、何处发生。
    • 将拥塞发生的信息传送到可采取行动的地方。
    • 调整网络系统的运行以解决出现的问题。

2.几种拥塞控制方法

1.慢开始和拥塞避免

  • 发送方维持一个叫做拥塞窗口 cwnd (congestion window)的状态变量。拥塞窗口的大小取决于网络的拥塞程度,并且动态地在变化。发送方让自己的发送窗口等于拥塞窗口。如再考虑到接收方的接收能力,则发送窗口还可能小于拥塞窗口。
  • 发送方控制拥塞窗口的原则是:只要网络没有出现拥塞,拥塞窗口就再增大一些,以便把更多的分组发送出去。但只要网络出现拥塞,拥塞窗口就减小一些,以减少注入到网络中的分组数。

慢开始算法的原理:

  • 在主机刚刚开始发送报文段时可先设置拥塞窗口 cwnd = 1,即设置为一个最大报文段 MSS 的数值。

  • 在每收到一个对新的报文段的确认后,将拥塞窗口加 1,即增加一个 MSS 的数值。

  • 用这样的方法逐步增大发送端的拥塞窗口 cwnd,可以使分组注入到网络的速率更加合理。

    image

传输轮次:

  • 使用慢开始算法后,每经过一个传输轮次,拥塞窗口 cwnd 就加倍。
  • 一个传输轮次所经历的时间其实就是往返时间 RTT。
  • “传输轮次”更加强调:把拥塞窗口 cwnd 所允许发送的报文段都连续发送出去,并收到了对已发送的最后一个字节的确认。
  • 例如,拥塞窗口 cwnd = 4,这时的往返时间 RTT 就是发送方连续发送 4 个报文段,并收到这 4 个报文段的确认,总共经历的时间。

设置慢开始门限状态变量ssthresh:

  • 慢开始门限 ssthresh 的用法如下:
  • 当 cwnd < ssthresh 时,使用慢开始算法。
  • 当 cwnd > ssthresh 时,停止使用慢开始算法而改用拥塞避免算法。
  • 当 cwnd = ssthresh 时,既可使用慢开始算法,也可使用拥塞避免算法。
  • 拥塞避免算法的思路是让拥塞窗口 cwnd 缓慢地增大,即每经过一个往返时间 RTT 就把发送方的拥塞窗口 cwnd 加 1,而不是加倍,使拥塞窗口 cwnd 按线性规律缓慢增长。

当网络出现拥塞时:

  • 无论在慢开始阶段还是在拥塞避免阶段,只要发送方判断网络出现拥塞(其根据就是没有按时收到确认),就要把慢开始门限 ssthresh 设置为出现拥塞时的发送方窗口值的一半(但不能小于2)。

  • 然后把拥塞窗口 cwnd 重新设置为 1,执行慢开始算法。

  • 这样做的目的就是要迅速减少主机发送到网络中的分组数,使得发生拥塞的路由器有足够时间把队列中积压的分组处理完毕。

    image

加法增大:
“加法增大”是指执行拥塞避免算法后,在收到对所有报文段的确认后(即经过一个往返时间),就把拥塞窗口 cwnd增加一个 MSS 大小,使拥塞窗口缓慢增大,以防止网络过早出现拥塞。

“拥塞避免”并非指完全能够避免了拥塞。利用以上的措施要完全避免网络拥塞还是不可能的。
“拥塞避免”是说在拥塞避免阶段把拥塞窗口控制为按线性规律增长,使网络比较不容易出现拥塞。

2.快重传和快恢复

  • 快重传算法首先要求接收方每收到一个失序的报文段后就立即发出重复确认。这样做可以让发送方及早知道有报文段没有到达接收方。

  • 发送方只要一连收到三个重复确认就应当立即重传对方尚未收到的报文段。

  • 不难看出,快重传并非取消重传计时器,而是在某些情况下可更早地重传丢失的报文段。

    image

快恢复算法 :

  • (1) 当发送端收到连续三个重复的确认时,就执行“乘法减小”算法,把慢开始门限 ssthresh 减半。但接下去不执行慢开始算法。
  • (2)由于发送方现在认为网络很可能没有发生拥塞,因此现在不执行慢开始算法,即拥塞窗口 cwnd 现在不设置为 1,而是设置为慢开始门限 ssthresh 减半后的数值,然后开始执行拥塞避免算法(“加法增大”),使拥塞窗口缓慢地线性增大。
image

发送窗口的上限值:

  • 发送方的发送窗口的上限值应当取为接收方窗口 rwnd 和拥塞窗口 cwnd 这两个变量中较小的一个,即应按以下公式确定:
    发送窗口的上限值=Min [rwnd, cwnd] (5-8)
  • 当 rwnd < cwnd 时,是接收方的接收能力限制发送窗口的最大值。
  • 当 cwnd < rwnd 时,则是网络的拥塞限制发送窗口的最大值。

常见问题解析

1 TCP连接时是三次握手,那么两次握手可行吗?

在《计算机网络》中是这样解释的:已失效的连接请求报文段”的产生在这样一种情况下:client发出的第一个连接请求报文段并没有丢失,而是在某个网络结点长时间的滞留了,以致延误到连接释放以后的某个时间才到达server。本来这是一个早已失效的报文段。但server收到此失效的连接请求报文段后,就误认为是client再次发出的一个新的连接请求。于是就向client发出确认报文段,同意建立连接。假设不采用“三次握手”,那么只要server发出确认,新的连接就建立了。由于现在client并没有发出建立连接的请求,因此不会理睬server的确认,也不会向server发送ACK包。这样就会白白浪费资源。而经过三次握手,客户端和服务器都有应有答,这样可以确保TCP正确连接。

2 为什么TCP连接是三次,挥手确是四次?

在TCP连接中,服务器端的SYN和ACK向客户端发送是一次性发送的,而在断开连接的过程中,B端向A端发送的ACK和FIN是是分两次发送的。因为在B端接收到A端的FIN后,B端可能还有数据要传输,所以先发送ACK,等B端处理完自己的事情后就可以发送FIN断开连接了。

3 为什么在第四次挥手后会有2个MSL的延时?

MSL是Maximum Segment Lifetime,最大报文段生存时间,2个MSL是报文段发送和接收的最长时间。假定网络不可靠,那么第四次发送的ACK可能丢失,即B端无法收到这个ACK,如果B端收不到这个确认ACK,B端会定时向A端重复发送FIN,直到B端收到A的确认ACK。所以这个2MSL就是用来处理这个可能丢失的ACK的。

TCP、UDP应用层的使用

1 文件传送协议

文件传送协议FTP (File Transfer Protocol) [RFC 959]是因特网上使用得最广泛的文件传送协议,底层采用TCP协议。

盯P 使用客户服务器方式。一个FTP 服务器进程可同时为多个客户进程提供服务。FTP的服务器进程由两大部分组成:一个主进程,负责接受新的请求:另外有若干个从属进程,负责处理单个请求。

FTP工作过程.png

在进行文件传输时,客户和服务器之间要建立两个并行的TCP 连接:“控制连接”(21端口)和“数据连接”(22端口)。控制连接在整个会话期间一直保持打开, FTP 客户所发出的传送请求,通过控制连接发送给服务器端的控制进程,但控制连接并不用来传送文件。实际用于传输文件的是“数据连接”。服务器端的控制进程在接收到FTP 客户发送来的文件传输请求后就创建“数据传送进程”和“数据连接”,用来连接客户端和服务器端的数据传送进程。

2 简单文件传送协议TFTP

TCP/IP 协议族中还有一个简单文件传送协议TFfP (Trivial File Transfer Protocol),它是一个很小且易于实现的文件传送协议,端口号69。

TFfP 也使用客户服务器方式,但它使用UDP 数据报,因此TFfP 需要有自己的差错改正措施。TFfP 只支持文件传输而不支持交耳。

3 TELNET

TELNET 是一个简单的远程终端协议,底层采用TCP协议。TELNET 也使用客户服务器方式。在本地系统运行TELNET 客户进程,而在远地主机则运行TELNET 服务器进程,占用端口23。

4 邮件传输协议

一个电子邮件系统应具如图所示的三个主要组成构件,这就是用户代理、邮件服务器,以及邮件发送协议(如SMTP )和邮件读取协议(如POP3), POP3 是邮局协议(Post Office Protocol)的版本3 。

电子邮件的最主要的组成构件

SMTP 和POP3 (或IMAP )都是在TCP 连接的上面传送邮件,使用TCP 的目的是为了使邮件的传送成为可靠的。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,634评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,951评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,427评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,770评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,835评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,799评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,768评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,544评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,979评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,271评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,427评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,121评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,756评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,375评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,579评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,410评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,315评论 2 352

推荐阅读更多精彩内容

  • 传输层提供的服务 传输层的功能 从通信和信息处理的角度看 ,传输层向它上面的应用层提供通信服务,它属于面向通信部分...
    CodeKing2017阅读 3,627评论 1 9
  • 本篇文章主要是从运输层协议概述、UDP、TCP、可靠传输的工作原理、TCP首部格式、TCP可靠传输的实现、TCP流...
    SeanMa阅读 3,869评论 2 13
  • 传输层-TCP, TCP头部结构 ,TCP序列号和确认号详解 TCP主要解决下面的三个问题 1.数据的可靠传输...
    抓兔子的猫阅读 4,515评论 1 46
  • 1.这篇文章不是本人原创的,只是个人为了对这部分知识做一个整理和系统的输出而编辑成的,在此郑重地向本文所引用文章的...
    SOMCENT阅读 13,060评论 6 174
  • 运输层协议概述 从通信和信息处理的角度看,运输层向它上面的应用层提供通信服务,它属于面向通信部分的最高层,同时也是...
    srtianxia阅读 2,406评论 0 2