第二章 Yarn基础库

简介

与MRv1相比Yarn的设计要复杂得多。YARN借用了MRv1的一些底层基础库(如RPC库),又引入了很多新的设计方式,它的基础库更多,如:google的开源序列化框架Protocol Buffers、Apache Avro、自定义的服务库、事件库和状态机等。

Yarn基础库是其它Yarn模块的基础,它的设计直接决定了YARN的稳定性和扩展性,概括起来,YARN的基础库主要有以下几个:

  • Protocol Buffers
  • Apache Arvo
  • RPC
  • 服务库和时间库
  • 状态机

接下来我们将一一介绍。

Protocol Buffers

简介

是Google的开源的序列化库,常有做数据存储,消息通信具有以下优点:

  • 跨平台
  • 高新能,体积小
  • 使用简单
  • 兼容性好

Protocol Buffers示例

PersonProtos.proto

option java_package = "com.thougtworks.demo";
option java_outer_classname = "PersonProtos";

message Person {

    required string name = 1;
    required int32 id = 2;
    optional string email = 3;
    message PhoneNumber {
        required string number = 1;
        required int32 type = 2;
    }

    repeated PhoneNumber phone = 4;

}

使用如下命令进行编译

protoc --java_out=. PersonProtos.proto

最终生成如下代码:


Apache Arvo

概念

它的RPC框架,具有平台无关,支持动态模式(无需编译)等优点。
目前只用于yarn日志序列化库中,以及MR所有事件采用Arvo做序列化和反序列化。

示例

user.avro

{
    "namespace": "com.thoughtworks.demo.avro",
    "type": "record",
    "name": "User",
    "fields": [
        {
            "name": "name",
            "type": "string"
        },
        {
            "name": "favorite_number",
            "type": [
                "int",
                "null"
            ]
        },
        {
            "name": "favorite_color",
            "type": [
                "string",
                "null"
            ]
        }
    ]
}

使用如下命令进行编译

java -jar avro-tools-1.8.2.jar compile schema user.avro

Hadoop RPC

RPC简介

RPC (Remote Procedure Call) 通过它解决的两个问题:

  • 解决分布式系统中,服务之间的调用问题。
  • 远程调用时,要能够像本地调用一样方便,让调用者感知不到远程调用的逻辑。

如何实现远程过程调用?



如上图, 当我们使用RPC完成一个远程加法调用是如何处理的的呢?

  1. Client端需要调用了远程的一个Calculator的一个实现类的add方法,这种通过远程调用Server端的RPC接口,来获取运算结果,因此称之为Stub。Stub可以认为它是一个代理;

  2. Stub怎么和Server端建立远程通讯呢?这时候就要用到远程通讯类库,也就是图中的Run-time Library,它的而实现有Java的Socket、Apache Arvo、Apache swift等;

  3. Stub通过调用通讯工具提供的方法,和Server建立起了通讯,然后将请求数据发给Server。需要注意的是,由于底层的网络通讯是基于二进制格式的,因此这里Stub传给Run-time Library的数据也必须是二进制,比如calculator.add(1,2),你必须把参数值1和2放到一个Request对象里头(这个Request对象当然不只这些信息,还包括要调用哪个服务的哪个RPC接口等其他信息),然后序列化为二进制,再传给Run-time Library;

  4. 二进制的数据传到Server端,Server端当然也有自己的通讯类库,通过它接收二进制的请求。既然数据是二进制的,那么自然要进行反序列化了,将二进制的数据反序列化为请求对象,然后将这个请求对象交给Server端的Stub处理;

  5. 和之前的Client端的Stub一样,这里的Stub也同样是个“假玩意”,它所负责的,只是去解析请求对象,知道调用方要调的是哪个RPC接口,传进来的参数又是什么,然后再把这些参数传给对应的RPC接口,也就是Calculator的实际实现类去执行;

  6. RPC接口执行完毕,返回执行结果,现在轮到Server端要把数据发给Client了。这里是一样的道理,一样的流程,只是相互的位置进行交换。

Hadoop RPC

Hadoop RPC主要对外提供了两个方法:

  1. public static <T> ProtocolProxy<T> getProtocolProxy得到RPC的客户端。
  2. public Builder(Configuration conf) 构造服务端对象。

Hadoop RPC主要由RPC、Client、Server三大类组成

1,RPC类分析

RPC类是对client-server网络模型的封装,为程序提供一套更方便更简洁的编程接口。

如上图,getProxy和waitForProxy是构建PRC的客户端, stop为销毁方法,set/getProtocolEngine是用来设置或者获得序列化的实现。

2,Client类分析

Client主要完成发PRC信息并接收结果。

如上图, Client内部有两个非常重要的内部类,Call和Connection。

  • Call类,包含5个成员变量,分别是:
    id:唯一标示,标示调用哪个远程的接口
    retry:重试次数
    rpcRequest:序列化后请求信息
    rpcResponse:序列化后返回值信息
    error: 错误信息
    done:是否执行完成的标示
    rpcKind:RPC序列化的类型,目前支持WritableRpcEngine ProtobufRpcEngine

  • Connection类,Client与每个Server之间的一个连接
    包含如下几个主要的变量和方法
    remoteId:client与server连接的唯一标示
    server:server的endpoint
    socket:与Server通信的socket
    in:输入流
    out:输入流
    calls:保存RPC请求的hash table
    addCall:将一个请求添加到hash table中
    sendParam:发送RPC请求
    receiveRespone:接受服务端的RPC请求
    run:调用receiveRespone,会一直等待接受PRC返回的结果

Client处理流程

如上图示:

  • 1,创建一个Connection对象,并将远程方法调用信息封装成Call,放到HashTable中。
  • 2,调用sendRpcRequest方法将当前Call对象发送给Server。
  • 3,Server处理预案RPC的请求后,将结果通过网络返回给Client,Client端通过receivePRCRespone函数返回结果。
  • 4,Client检查结果(成功or失败),并将对应Call对象冲HashTable中删除。
Server类分析
Reactor模式

Reactor模式中文叫做反应器模式,是用来解决服务器端高性能并发的问题。Netty、Redis都使其解决高并发的问题。

示例代码:

package com.wing.test;

import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.channels.SelectionKey;
import java.nio.channels.Selector;
import java.nio.channels.ServerSocketChannel;
import java.nio.channels.SocketChannel;
import java.util.Iterator;
import java.util.Set;

class Reactor implements Runnable {
    final Selector selector;
    final ServerSocketChannel serverSocket;

    Reactor(int port) throws IOException { //Reactor初始化
        selector = Selector.open();
        serverSocket = ServerSocketChannel.open();
        serverSocket.socket().bind(new InetSocketAddress(port));
        //非阻塞
        serverSocket.configureBlocking(false);

        //分步处理,第一步,接收accept事件
        SelectionKey sk =
                serverSocket.register(selector, SelectionKey.OP_ACCEPT);
        //attach callback object, Acceptor
        sk.attach(new Acceptor());
    }

    public void run() {
        try {
            while (!Thread.interrupted()) {
                selector.select();
                Set selected = selector.selectedKeys();
                Iterator it = selected.iterator();
                while (it.hasNext()) {
                    //Reactor负责dispatch收到的事件
                    dispatch((SelectionKey) (it.next()));
                }
                selected.clear();
            }
        } catch (IOException ex) { /* ... */ }
    }

    void dispatch(SelectionKey k) {
        Runnable r = (Runnable) (k.attachment());
        //调用之前注册的callback对象
        if (r != null) {
            r.run();
        }
    }

    // inner class
    class Acceptor implements Runnable {
        public void run() {
            try {
                SocketChannel channel = serverSocket.accept();
                if (channel != null)
                    new MthreadHandler(selector, channel);
            } catch (IOException ex) {
                ex.printStackTrace();
            }

        }
    }
}
package com.wing.test;

import java.io.IOException;
import java.nio.ByteBuffer;
import java.nio.channels.SelectionKey;
import java.nio.channels.Selector;
import java.nio.channels.SocketChannel;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

class MthreadHandler implements Runnable
{
    final SocketChannel channel;
    final SelectionKey selectionKey;
    ByteBuffer input = ByteBuffer.allocate(1024);
    ByteBuffer output = ByteBuffer.allocate(3072);
    static final int READING = 0, SENDING = 1;
    int state = READING;


    ExecutorService pool = Executors.newFixedThreadPool(2);
    static final int PROCESSING = 3;

    MthreadHandler(Selector selector, SocketChannel c) throws IOException
    {
        channel = c;
        c.configureBlocking(false);
        // Optionally try first read now
        selectionKey = channel.register(selector, 0);

        //将Handler作为callback对象
        selectionKey.attach(this);

        //第二步,注册Read就绪事件
        selectionKey.interestOps(SelectionKey.OP_READ);
        selector.wakeup();
    }

    boolean inputIsComplete()
    {
       /* ... */
        return false;
    }

    boolean outputIsComplete()
    {

       /* ... */
        return false;
    }

    void process()
    {
       /* ... */
        return;
    }

    public void run()
    {
        try
        {
            if (state == READING)
            {
                read();
            }
            else if (state == SENDING)
            {
                send();
            }
        } catch (IOException ex)
        { /* ... */ }
    }


    synchronized void read() throws IOException
    {
        // ...
        channel.read(input);
        if (inputIsComplete())
        {
            state = PROCESSING;
            //使用线程pool异步执行
            pool.execute(new Processer());
        }
    }

    void send() throws IOException
    {
        channel.write(output);

        //write完就结束了, 关闭select key
        if (outputIsComplete())
        {
            selectionKey.cancel();
        }
    }

    synchronized void processAndHandOff()
    {
        process();
        state = SENDING;
        // or rebind attachment
        //process完,开始等待write就绪
        selectionKey.interestOps(SelectionKey.OP_WRITE);
    }

    class Processer implements Runnable
    {
        public void run()
        {
            processAndHandOff();
        }
    }

}
Yarn Server中Reactor模式
  • Reactor: I/O事件的派发者。
  • Acceptor:接受Client的连接,并指派给一个Handler。
  • Handler 与一个Client的通信实体,具体实现业务处理。
  • Reader/Sender: 为加速处理,Reactor模式构建一个存放数据的处理线程的线程池。这样数据读出后或者写入前,立即放到线程池中执行。

Server端的处理流程是什么样的呢?如下图

屏幕快照 2019-12-05 15.52.39.png
  1. 接收请求
    接收来自各个客户端的RPC请求,装成Call类,并放到callQueue中,以便进行后续处理。该阶段内部又分为建立连接和接收请求两个子阶段,分别由Listener和Reader两种线程完成。
    整个Server只有一个Listener线程,统一负责监听来自客户端的连接请求,一旦有新的请求到达,它会采用轮询的方式从线程池中选择一个Reader线程进行处理,而Reader线程可同时存在多个,它们分别负责接收一部分客户端连接的RPC请求,至Listener决定,当前Listener只是采用了简单的轮询分配机制。
    Listener和Reader线程内部各自包含一个Selector对象,分别用于监听SelectionKey.OP_ACCEPT和SelectionKey.OP_READ事件。对于Listener线程,主循环的实现体是监听是否有新的连接请求到达,并采用轮询策略选择一个Reader线程处理新连接;对于Reader线程,主循环的实现体是监听(它负责的那部分)客户端连接中是否有新的RPC请求到达,并将新的RPC请求封装成Call对象,放到共享队列callQueue中。

  2. 处理请求
    该阶段主要任务是从共享队列callQueue中获取Call对象,执行对应的函数调用,并将结果返回给客户端,这全部由Handler线程完成。
    Server端可同时存在多个Handler线程,它们并行从共享队列中读取Call对象,经执行对应的函数调用后,将尝试着直接将结果返回给对应的客户端。但考虑到某些函数调用返回结果很大或者网络速度过慢,可能难以将结果一次性发送到客户端,此时Handler将尝试着将后续发送任务

  3. 返回结果
    前面提到,每个Handler线程执行完函数调用后,会尝试着将执行结果返回给客户端,但对于特殊情况,比如函数调用返回结果过大或者网络异常情况(网速过慢),会将发送任务交给Responder线程。
    Server端仅存在一个Responder线程,它的内部包含一个Selector对象,用于监听SelectionKey.OP_WRITE事件。当Handler没能将结果一次性发送到客户端时,会向该Selector对象注册SelectionKey.OP_WRITE事件,进而由Responder线程采用异步方式继续发送未发送完成的结果。

4,在Yarn中如何自定义的一个RPC服务
  1. 定义一个PRC协议
interface ClientProtocol extends org.apache.hadoop.ipc.VersionedProtocol {
//版本号,默认情况下,不同版本号的RPC Client和Server之间不能相互通信
    public static final long versionID = 1L;
    String echo(String value) throws IOException;
    int add(int v1, int v2) throws IOException;
}
  1. 实现一个PRC协议
public static class ClientProtocolImpl implements ClientProtocol {
    //重载的方法,用于获取自定义的协议版本号,
    public long getProtocolVersion(String protocol, long clientVersion) {
      return ClientProtocol.versionID;
    }
    //重载的方法,用于获取协议签名
    public ProtocolSignature getProtocolSignature(String protocol, long clientVersion,
    inthashcode) {
      return new ProtocolSignature(ClientProtocol.versionID, null);
    }
    public String echo(String value) throws IOException {
      return value;
    }
    public int add(int v1, int v2) throws IOException {
      return v1 + v2;
    }
}

  1. 构造并启动RPC Server
Server server = new RPC.Builder(conf)
   .setProtocol(ClientProtocol.class)
   .setInstance(new ClientProtocolImpl())
   .setBindAddress(ADDRESS)
   .setPort(8080)
   .setNumHandlers(5).build();
server.start();
  1. 构造RPC Client并发送RPC请求
proxy = (ClientProtocol)RPC.getProxy(ClientProtocol.class, ClientProtocol.versionID, addr, conf);
int result = proxy.add(5, 6);
String echoResult = proxy.echo("result");

服务库和事件库

1,服务库

YARN对于生命周期较长的对象,采用了基于服务的对象管理模型对其进行管理,该模型主要有以下几个特点:

  • 每个服务对象分为4个状态:
    NOTINITED(被创建)
    INITED(已初始化)
    STARTED(已启动)
    STOPPED(已停止)
  • 任何服务状态变化都可以触发Action。
  • 可通过组合的方式对任意服务进行组合,以便进行统一管理。

如上图,所有的服务对象最终均实现了接口Service,它定义了最基本的服务初始化、启动、停止等操作,而AbstractService类提供了一个最基本的Service实现。YARN中所有对象,如果是非组合服务,直接继承AbstractService类即可,否则需继承CompositeService。比如ResourceManager。

事件库

YARN采用了基于事件驱动的并发模型,该模型能够大大增强并发性,从而提高系统整体性能。为了构建该模型,YARN将各种处理逻辑抽象成事件和对应事件调度器,并将每类事件的处理过程分割成多个步骤,用有限状态机表示。

如上图,具体过程:处理请求会作为事件进入系统,由中央异步调度器(AsyncDispatcher)负责传递给相应事件调度器(Event Handler)。该事件调度器可能将该事件转发给另外一个事件调度器,也可能交给一个带有有限状态机的事件处理器,其处理结果也以事件的形式输出给中央异步调度器。而新的事件会再次被中央异步调度器转发给下一个事件调度器,直至处理完成(达到终止条件)。

在YARN中,所有核心服务实际上都是一个中央异步调度器,包括ResourceManager、NodeManager、MRAppMaster等,它们维护了事先注册的事件与事件处理器,并根据接收的事件类型驱动服务的运行。

当使用YARN事件库时,通常先要定义一个中央异步调度器AsyncDispatcher,负责事件的处理与转发,然后根据实际业务需求定义一系列事件Event与事件处理器EventHandler,并注册到中央异步调度器中以实现事件统一管理和调度。

AsyncDispatcher UML图

状态机

状态机模式

状态机:由一组状态组成,这些状态分为三类:初始状态、中间状态和最终状态。状态机从初始状态开始运行,经过一系列中间状态后,到达最终状态并退出。在一个状态机中,每个状态都可以接收一组特定事件,并根据具体的事件类型转换到另一个状态。当状态机转换到最终状态时,则退出。

状态机解决的问题:解决复杂状态下,状态流转过程中的可扩展性,可阅读性。

如上图是示:

  • Context:环境类
  • State:抽象状态类
  • ConcreteState:具体状态类

示例:

public class StateMachineTest {
    public static void main(String[] args) {
        Context context = new ContextImpl();
        context.state(ColorState.WHITE);
        while (context.state().process(context)) ;
    }
}
public interface Context {
    State state();
    void state(State state);
}
public class ContextImpl implements Context {

    State state;

    @Override
    public State state() {
        return state;
    }

    @Override
    public void state(State state) {
        this.state = state;
    }

}
interface State {

    boolean process(Context context);
}

public enum ColorState implements State {

    RED {
        public boolean process(Context context) {
            context.state(ColorState.GREEN);
            System.out.println("Current State = " + this);
            return true;
        }
    },

    GREEN {
        public boolean process(Context context) {
            context.state(ColorState.BLACK);
            System.out.println("Current State = " + this);
            return true;
        }
    },

    BLACK {
        public boolean process(Context context) {
            context.state(ColorState.YELLOW);
            System.out.println("Current State = " + this);
            return true;
        }
    },

    YELLOW {
        public boolean process(Context context) {
            context.state(ColorState.WHITE);
            System.out.println("Current State = " + this);
            return true;
        }
    },

    WHITE {
        public boolean process(Context context) {
            context.state(ColorState.BLUE);
            System.out.println("Current State = " + this);
            return true;
        }
    },

    BLUE {
        public boolean process(Context context) {
            context.state(ColorState.RED);
            System.out.println("Current State = " + this);
            return false;
        }
    };

    public abstract boolean process(Context context);
}
Yarn状态机

在Yarn中,每种状态转换由一个四元组表示,分别是转换前状态(preState)、转换后状态(postState)、事件(event)和回调函数(hook)。YARN定义了三种状态转换方式,具体如下:

  • 一个初始状态、一个最终状态、一种事件。该方式表示状态机在preState状态下,接收到Event事件后,执行函数状态转移函数Hook,并在执行完成后将当前状态转换为postState。
  • 一个初始状态、多个最终状态、一种事件。该方式表示状态机在preState状态下,接收到Event事件后,执行函数状态转移函数Hook,并将当前状态转移为函数Hook的返回值所表示的状态。
  • 一个初始状态、一个最终状态、多种事件。该方式表示状态机在preState状态下,接收到Event1、Event2和Event3中的任何一个事件,将执行函数状态转移函数Hook,并在执行完成后将当前状态转换为postState。

Yarn状态机类的具体实现

如上图:YARN对外提供了一个状态机工厂StatemachineFactory,它提供多种addTransition方法供用户添加各种状态转移,一旦状态机添加完毕后,可通过调用installTopology完成一个状态机的构建。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,794评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,050评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,587评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,861评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,901评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,898评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,832评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,617评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,077评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,349评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,483评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,199评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,824评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,442评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,632评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,474评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,393评论 2 352