ES学习教程

前言

  • es是什么?
    es是基于Apache Lucene的开源分布式(全文)搜索引擎,,提供简单的RESTful API来隐藏Lucene的复杂性。
    es除了全文搜索引擎之外,还可以这样描述它:
    1、分布式的实时文件存储,每个字段都被索引并可被搜索
    2、分布式的实时分析搜索引擎
    3、可以扩展到成百上千台服务器,处理PB级结构化或非结构化数据。

  • ES的数据组织类比

Relational DB Elasticsearch
数据库(database) 索引(indices)
表(tables) types
行(rows) documents
字段(columns) fields
  • mac安装ES
- 1、更新brew   
```brew update```
- 2、安装java1.8版本
```brew cask install homebrew/cask-versions/java8```
- 3、安装ES
```brew install elasticsearch```
- 4、启动本地ES
```brew services start elasticsearch```
- 5、本地访问9200端口查看ES安装
```http://localhost:9200```
- 6、安装kibana
```Kibana是ES的一个配套工具,可以让用户在网页中与ES进行交互```
```brew install kibana```
- 7、本地启动kibana
```brew services start kibana```
- 8、本地访问5601端口进入kibana交互界面
```http://localhost:5601```

一、 ES简单的增删改查

1、创建一篇文档(有则修改,无则创建)

PUT test/doc/2
{
  "name":"wangfei",
  "age":27,
  "desc":"热天还不让后人不认同"
}

PUT test/doc/1
{
  "name":"wangjifei",
  "age":27,
  "desc":"萨芬我反胃为范围额"
}

PUT test/doc/3
{
  "name":"wangyang",
  "age":30,
  "desc":"点在我心内的几首歌"
}

2、查询指定索引信息

GET test

3、 查询指定文档信息

GET test/doc/1
GET test/doc/2

4、查询对应索引下所有数据

GET test/doc/_search
或
GET test/doc/_search
{
  "query": {
    "match_all": {}
  }
}

5、删除指定文档

DELETE test/doc/3

6、删除索引

DELETE test

7、修改指定文档方式

  • 修改时,不指定的属性会自动覆盖,只保留指定的属性(不正确的修改指定文档方式)
PUT test/doc/1
{
  "name":"王计飞"
}
  • 使用POST命令,在id后面跟_update,要修改的内容放到doc文档(属性)中(正确的修改指定文档方式)
POST test/doc/1/_update
{
  "doc":{
    "desc":"生活就像 茫茫海上"
  }
}

二、ES查询的两种方式

1、查询字符串搜索

GET test/doc/_search?q=name:wangfei

2、结构化查询(单字段查询,不能多字段组合查询)

GET test/doc/_search
{
  "query":{
    "match":{
      "name":"wang"
    }
  }
}

三、match系列之操作

1、match系列之match_all (查询全部)

GET test/doc/_search
{
  "query":{
    "match_all": {
    }
  }
}

2、match系列之match_phrase(短语查询)

准备数据

PUT test1/doc/1
{
  "title": "中国是世界上人口最多的国家"
}
PUT test1/doc/2
{
  "title": "美国是世界上军事实力最强大的国家"
}
PUT test1/doc/3
{
  "title": "北京是中国的首都"
}
查询语句

GET test1/doc/_search
{
  "query":{
    "match":{
      "title":"中国"
    }
  }
}

>>>输出结果
{
  "took" : 241,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 3,
    "max_score" : 0.68324494,
    "hits" : [
      {
        "_index" : "test1",
        "_type" : "doc",
        "_id" : "1",
        "_score" : 0.68324494,
        "_source" : {
          "title" : "中国是世界上人口最多的国家"
        }
      },
      {
        "_index" : "test1",
        "_type" : "doc",
        "_id" : "3",
        "_score" : 0.5753642,
        "_source" : {
          "title" : "北京是中国的首都"
        }
      },
      {
        "_index" : "test1",
        "_type" : "doc",
        "_id" : "2",
        "_score" : 0.39556286,
        "_source" : {
          "title" : "美国是世界上军事实力最强大的国家"
        }
      }
    ]
  }
}

通过观察结果可以发现,虽然如期的返回了中国的文档。但是却把和美国的文档也返回了,这并不是我们想要的。是怎么回事呢?因为这是elasticsearch在内部对文档做分词的时候,对于中文来说,就是一个字一个字分的,所以,我们搜中国,中和国都符合条件,返回,而美国的国也符合。而我们认为中国是个短语,是一个有具体含义的词。所以elasticsearch在处理中文分词方面比较弱势。后面会讲针对中文的插件。但目前我们还有办法解决,那就是使用短语查询 用match_phrase
GET test1/doc/_search
{
  "query":{
    "match_phrase": {
      "title": "中国"
    }
  }
}

>>>查询结果
{
  "took" : 10,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 2,
    "max_score" : 0.5753642,
    "hits" : [
      {
        "_index" : "test1",
        "_type" : "doc",
        "_id" : "1",
        "_score" : 0.5753642,
        "_source" : {
          "title" : "中国是世界上人口最多的国家"
        }
      },
      {
        "_index" : "test1",
        "_type" : "doc",
        "_id" : "3",
        "_score" : 0.5753642,
        "_source" : {
          "title" : "北京是中国的首都"
        }
      }
    ]
  }
}
我们搜索中国和世界这两个指定词组时,但又不清楚两个词组之间有多少别的词间隔。那么在搜的时候就要留有一些余地。这时就要用到了slop了。相当于正则中的中国.*?世界。这个间隔默认为0
GET test1/doc/_search
{
  "query":{
    "match_phrase": {
      "title": {
        "query": "中国世界",
        "slop":2
      }
    }
  }
}

>>>查询结果
{
  "took" : 23,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 1,
    "max_score" : 0.7445889,
    "hits" : [
      {
        "_index" : "test1",
        "_type" : "doc",
        "_id" : "1",
        "_score" : 0.7445889,
        "_source" : {
          "title" : "中国是世界上人口最多的国家"
        }
      }
    ]
  }
}

3、match系列之match_phrase_prefix(最左前缀查询)智能搜索--以什么开头

数据准备

PUT test2/doc/1
{
  "title": "prefix1",
  "desc": "beautiful girl you are beautiful so"
}

PUT test2/doc/2
{
  "title": "beautiful",
  "desc": "I like basking on the beach"
}
搜索特定英文开头的数据
查询语句

GET test2/doc/_search
{
  "query": {
    "match_phrase_prefix": {
      "desc": "bea"
    }
  }
}

>>>查询结果()
{
  "took" : 5,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 2,
    "max_score" : 0.39556286,
    "hits" : [
      {
        "_index" : "test2",
        "_type" : "doc",
        "_id" : "1",
        "_score" : 0.39556286,
        "_source" : {
          "title" : "prefix1",
          "desc" : "beautiful girl you are beautiful so"
        }
      },
      {
        "_index" : "test2",
        "_type" : "doc",
        "_id" : "2",
        "_score" : 0.2876821,
        "_source" : {
          "title" : "beautiful",
          "desc" : "I like basking on the beach"
        }
      }
    ]
  }
}

查询短语
GET test2/doc/_search
{
  "query": {
    "match_phrase_prefix": {
      "desc": "you are bea"
    }
  }
}

>>>查询结果
{
  "took" : 28,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 1,
    "max_score" : 0.8630463,
    "hits" : [
      {
        "_index" : "test2",
        "_type" : "doc",
        "_id" : "1",
        "_score" : 0.8630463,
        "_source" : {
          "title" : "prefix1",
          "desc" : "beautiful girl you are beautiful so"
        }
      }
    ]
  }
}

max_expansions 参数理解 前缀查询会非常的影响性能,要对结果集进行限制,就加上这个参数。
GET test2/doc/_search
{
  "query": {
    "match_phrase_prefix": {
      "desc": {
        "query": "bea",
        "max_expansions":1
      }
    }
  }
}

4、match系列之multi_match(多字段查询)

  • multi_match是要在多个字段中查询同一个关键字 除此之外,mulit_match甚至可以当做match_phrase和match_phrase_prefix使用,只需要指定type类型即可
GET test2/doc/_search
{
  "query": {
    "multi_match": {
      "query": "beautiful",
      "fields": ["title","desc"]
    }
  }
}

>>查询结果
{
  "took" : 43,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 2,
    "max_score" : 0.39556286,
    "hits" : [
      {
        "_index" : "test2",
        "_type" : "doc",
        "_id" : "1",
        "_score" : 0.39556286,
        "_source" : {
          "title" : "prefix1",
          "desc" : "beautiful girl you are beautiful so"
        }
      },
      {
        "_index" : "test2",
        "_type" : "doc",
        "_id" : "2",
        "_score" : 0.2876821,
        "_source" : {
          "title" : "beautiful",
          "desc" : "I like basking on the beach"
        }
      }
    ]
  }
}
  • 当设置属性 type:phrase 时 等同于 短语查询
GET test1/doc/_search
{
  "query": {
    "multi_match": {
      "query": "中国",
      "fields": ["title"],
      "type": "phrase"
    }
  }
}

>>>查询结果
{
  "took" : 47,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 2,
    "max_score" : 0.5753642,
    "hits" : [
      {
        "_index" : "test1",
        "_type" : "doc",
        "_id" : "1",
        "_score" : 0.5753642,
        "_source" : {
          "title" : "中国是世界上人口最多的国家"
        }
      },
      {
        "_index" : "test1",
        "_type" : "doc",
        "_id" : "3",
        "_score" : 0.5753642,
        "_source" : {
          "title" : "北京是中国的首都"
        }
      }
    ]
  }
}
  • 当设置属性 type:phrase_prefix时 等同于 最左前缀查询
GET test2/doc/_search
{
  "query": {
    "multi_match": {
      "query": "bea",
      "fields": ["desc"],
      "type": "phrase_prefix"
    }
  }
}

>>查询结果
{
  "took" : 5,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 2,
    "max_score" : 0.5753642,
    "hits" : [
      {
        "_index" : "test1",
        "_type" : "doc",
        "_id" : "1",
        "_score" : 0.5753642,
        "_source" : {
          "title" : "中国是世界上人口最多的国家"
        }
      },
      {
        "_index" : "test1",
        "_type" : "doc",
        "_id" : "3",
        "_score" : 0.5753642,
        "_source" : {
          "title" : "北京是中国的首都"
        }
      }
    ]
  }
}

match 查询相关总结

1、match:返回所有匹配的分词。

2、match_all:查询全部。

3、match_phrase:短语查询,在match的基础上进一步查询词组,可以指定slop分词间隔。

4、match_phrase_prefix:前缀查询,根据短语中最后一个词组做前缀匹配,可以应用于搜索提示,但注意和max_expanions搭配。其实默认是50.......

5、multi_match:多字段查询,使用相当的灵活,可以完成match_phrase和match_phrase_prefix的工作。

四、ES的排序查询

es 6.8.4版本中,需要分词的字段不可以直接排序,比如:text类型,如果想要对这类字段进行排序,需要特别设置:对字段索引两次,一次索引分词(用于搜索)一次索引不分词(用于排序),es默认生成的text类型字段就是通过这样的方法实现可排序的。
GET test/doc/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "age": {
        "order": "desc"
      }
    }
  ]
}

>>排序结果
{
  "took" : 152,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 3,
    "max_score" : null,
    "hits" : [
      {
        "_index" : "test",
        "_type" : "doc",
        "_id" : "3",
        "_score" : null,
        "_source" : {
          "name" : "wangyang",
          "age" : 30,
          "desc" : "点在我心内的几首歌"
        },
        "sort" : [
          30
        ]
      },
      {
        "_index" : "test",
        "_type" : "doc",
        "_id" : "2",
        "_score" : null,
        "_source" : {
          "name" : "wangfei",
          "age" : 27,
          "desc" : "热天还不让后人不认同"
        },
        "sort" : [
          27
        ]
      },
      {
        "_index" : "test",
        "_type" : "doc",
        "_id" : "1",
        "_score" : null,
        "_source" : {
          "name" : "wangjifei",
          "age" : 27,
          "desc" : "生活就像 茫茫海上"
        },
        "sort" : [
          27
        ]
      }
    ]
  }
}
  • 升序排序
GET test/doc/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "age": {
        "order": "asc"
      }
    }
  ]
}

五、ES的分页查询

  • from:从哪开始查 size:返回几条结果
GET test/doc/_search
{
  "query": {
    "match_phrase_prefix": {
      "name": "wang"
    }
  },
  "from": 0,
  "size": 1
}

>>查询结果
{
  "took" : 3,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 3,
    "max_score" : 0.2876821,
    "hits" : [
      {
        "_index" : "test",
        "_type" : "doc",
        "_id" : "2",
        "_score" : 0.2876821,
        "_source" : {
          "name" : "wangfei",
          "age" : 27,
          "desc" : "热天还不让后人不认同"
        }
      }
    ]
  }
}

六、ES的bool查询 (must、should)

  • must (must字段对应的是个列表,也就是说可以有多个并列的查询条件,一个文档满足各个子条件后才最终返回)
#### 单条件查询
GET test/doc/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
          "name": "wangfei"
          }
        }
      ]
    }
  }
}

>>查询结果
{
  "took" : 4,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 1,
    "max_score" : 0.2876821,
    "hits" : [
      {
        "_index" : "test",
        "_type" : "doc",
        "_id" : "2",
        "_score" : 0.2876821,
        "_source" : {
          "name" : "wangfei",
          "age" : 27,
          "desc" : "热天还不让后人不认同"
        }
      }
    ]
  }
}
#### 多条件组合查询
GET test/doc/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "name": "wanggfei"
          }
        },{
          "match": {
            "age": 25
          }
        }
      ]
    }
  }
}

>>查询结果
{
  "took" : 21,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 0,
    "max_score" : null,
    "hits" : [ ]
  }
}

  • should (只要符合其中一个条件就返回)
GET test/doc/_search
{
  "query": {
    "bool": {
      "should": [
        {
          "match": {
          "name": "wangjifei"
        }
        },{
          "match": {
            "age": 27
          }
        }
      ]
    }
  }
}

>>查询结果
{
  "took" : 34,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 2,
    "max_score" : 1.287682,
    "hits" : [
      {
        "_index" : "test",
        "_type" : "doc",
        "_id" : "1",
        "_score" : 1.287682,
        "_source" : {
          "name" : "wangjifei",
          "age" : 27,
          "desc" : "生活就像 茫茫海上"
        }
      },
      {
        "_index" : "test",
        "_type" : "doc",
        "_id" : "2",
        "_score" : 1.0,
        "_source" : {
          "name" : "wangfei",
          "age" : 27,
          "desc" : "热天还不让后人不认同"
        }
      }
    ]
  }
}
  • must_not 顾名思义
GET test/doc/_search
{
  "query": {
    "bool": {
      "must_not": [
        {
          "match": {
            "name": "wangjifei"
          }
        },{
          "match": {
            "age": 27
          }
        }
      ]
    }
  }
}

>>查询结果
{
  "took" : 13,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 1,
    "max_score" : 1.0,
    "hits" : [
      {
        "_index" : "test",
        "_type" : "doc",
        "_id" : "3",
        "_score" : 1.0,
        "_source" : {
          "name" : "wangyang",
          "age" : 30,
          "desc" : "点在我心内的几首歌"
        }
      }
    ]
  }
}
  • filter(条件过滤查询,过滤条件的范围用range表示gt表示大于、lt表示小于、gte表示大于等于、lte表示小于等于)
GET test/doc/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "name": "wangjifei"
          }
        }
      ],
      "filter": {
        "range": {
          "age": {
            "gte": 10,
            "lt": 27
          }
        }
      }
    }
  }
}

>>查询结果
{
  "took" : 33,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 0,
    "max_score" : null,
    "hits" : [ ]
  }
}

bool查询总结

must:与关系,相当于关系型数据库中的 and。

should:或关系,相当于关系型数据库中的 or。

must_not:非关系,相当于关系型数据库中的 not。

filter:过滤条件。

range:条件筛选范围。

gt:大于,相当于关系型数据库中的 >。

gte:大于等于,相当于关系型数据库中的 >=。

lt:小于,相当于关系型数据库中的 <。

lte:小于等于,相当于关系型数据库中的 <=。

七、ES之查询结果过滤

####准备数据

PUT test3/doc/1
{
  "name":"顾老二",
  "age":30,
  "from": "gu",
  "desc": "皮肤黑、武器长、性格直",
  "tags": ["黑", "长", "直"]
}
  • 现在,在所有的结果中,我只需要查看name和age两个属性,提高查询效率
GET test3/doc/_search
{
  "query": {
    "match": {
      "name": "顾"
    }
  },
  "_source": ["name","age"]
}

>>查询结果
{
  "took" : 58,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 1,
    "max_score" : 0.2876821,
    "hits" : [
      {
        "_index" : "test3",
        "_type" : "doc",
        "_id" : "1",
        "_score" : 0.2876821,
        "_source" : {
          "name" : "顾老二",
          "age" : 30
        }
      }
    ]
  }
}

八、ES之查询结果高亮显示

  • ES的默认高亮显示
GET test3/doc/_search
{
  "query": {
    "match": {
      "name": "顾老二"
    }
  },
  "highlight": {
    "fields": {
      "name": {}
    }
  }
}

>>查询结果
{
  "took" : 216,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 1,
    "max_score" : 0.8630463,
    "hits" : [
      {
        "_index" : "test3",
        "_type" : "doc",
        "_id" : "1",
        "_score" : 0.8630463,
        "_source" : {
          "name" : "顾老二",
          "age" : 30,
          "from" : "gu",
          "desc" : "皮肤黑、武器长、性格直",
          "tags" : [
            "黑",
            "长",
            "直"
          ]
        },
        "highlight" : {
          "name" : [
            "<em>顾</em><em>老</em><em>二</em>"
          ]
        }
      }
    ]
  }
}
ES自定义高亮显示(在highlight中,pre_tags用来实现我们的自定义标签的前半部分,在这里,我们也可以为自定义的 标签添加属性和样式。post_tags实现标签的后半部分,组成一个完整的标签。至于标签中的内容,则还是交给fields来完成)
GET test3/doc/_search
{
  "query": {
    "match": {
      "desc": "性格直"
    }
  },
  "highlight": {
    "pre_tags": "<b class='key' style='color:red'>",
    "post_tags": "</b>",
    "fields": {
      "desc": {}
    }
  }
}

>>查询结果
{
  "took" : 6,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 1,
    "max_score" : 0.8630463,
    "hits" : [
      {
        "_index" : "test3",
        "_type" : "doc",
        "_id" : "1",
        "_score" : 0.8630463,
        "_source" : {
          "name" : "顾老二",
          "age" : 30,
          "from" : "gu",
          "desc" : "皮肤黑、武器长、性格直",
          "tags" : [
            "黑",
            "长",
            "直"
          ]
        },
        "highlight" : {
          "desc" : [
            "皮肤黑、武器长、<b class='key' style='color:red'>性</b><b class='key' style='color:red'>格</b><b class='key' style='color:red'>直</b>"
          ]
        }
      }
    ]
  }
}

十、ES之精确查询与模糊查询

  • term查询查找包含文档精确的倒排索引指定的词条。也就是精确查找。
term和match的区别是:match是经过analyer的,也就是说,文档首先被分析器给处理了。根据不同的分析器,分析的结果也稍显不同,然后再根据分词结果进行匹配。term则不经过分词,它是直接去倒排索引中查找了精确的值了。
#### 准备数据
PUT w1
{
  "mappings": {
    "doc": {
      "properties":{
        "t1":{
          "type": "text"
        },
        "t2": {
          "type": "keyword"
        }
      }
    }
  }
}

PUT w1/doc/1
{
  "t1": "hi single dog",
  "t2": "hi single dog"
}
  • 对比两者的不同 (结果就不展示出来了,只展示结果的文字叙述)
# t1类型为text,会经过分词,match查询时条件也会经过分词,所以下面两种查询都能查到结果
GET w1/doc/_search
{
  "query": {
    "match": {
      "t1": "hi single dog" 
    }
  }
}

GET w1/doc/_search
{
  "query": {
    "match": {
      "t1": "hi" 
    }
  }
}

# t2类型为keyword类型,不会经过分词,match查询时条件会经过分词,所以只能当值为"hi single dog"时能查询到
GET w1/doc/_search
{
  "query": {
    "match": {
      "t2": "hi" 
    }
  }
}

GET w1/doc/_search
{
  "query": {
    "match": {
      "t2": "hi single dog" 
    }
  }
}

# t1类型为text,会经过分词,term查询时条件不会经过分词,所以只有当值为"hi"时能查询到
GET w1/doc/_search
{
  "query": {
    "term": {
      "t1": "hi single dog" 
    }
  }
}

GET w1/doc/_search
{
  "query": {
    "term": {
      "t1": "hi" 
    }
  }
}

# t2类型为keyword类型,不会经过分词,term查询时条件不会经过分词,所以只能当值为"hi single dog"时能查询到

GET w1/doc/_search
{
  "query": {
    "term": {
      "t2": "hi single dog" 
    }
  }
}

GET w1/doc/_search
{
  "query": {
    "term": {
      "t2": "hi" 
    }
  }
}
  • 查找多个精确值(terms)
#### 第一个查询方式
GET test/doc/_search
{
  "query": {
    "bool": {
      "should": [
        {
          "term": {
            "age":27
          }
        },{
          "term":{
            "age":28
          }
        }
      ]
    }
  }
}


# 第二个查询方式
GET test/doc/_search
{
  "query": {
    "terms": {
      "age": [
        "27",
        "28"
      ]
    }
  }
}

>>>两种方式的查询结果都是一下结果 
{
  "took" : 10,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 2,
    "max_score" : 1.0,
    "hits" : [
      {
        "_index" : "test",
        "_type" : "doc",
        "_id" : "2",
        "_score" : 1.0,
        "_source" : {
          "name" : "wangfei",
          "age" : 27,
          "desc" : "热天还不让后人不认同"
        }
      },
      {
        "_index" : "test",
        "_type" : "doc",
        "_id" : "1",
        "_score" : 1.0,
        "_source" : {
          "name" : "wangjifei",
          "age" : 27,
          "desc" : "生活就像 茫茫海上"
        }
      }
    ]
  }
}

十一、ES的聚合查询avg、max、min、sum

####  数据准备

PUT zhifou/doc/1
{
  "name":"顾老二",
  "age":30,
  "from": "gu",
  "desc": "皮肤黑、武器长、性格直",
  "tags": ["黑", "长", "直"]
}

PUT zhifou/doc/2
{
  "name":"大娘子",
  "age":18,
  "from":"sheng",
  "desc":"肤白貌美,娇憨可爱",
  "tags":["白", "富","美"]
}

PUT zhifou/doc/3
{
  "name":"龙套偏房",
  "age":22,
  "from":"gu",
  "desc":"mmp,没怎么看,不知道怎么形容",
  "tags":["造数据", "真","难"]
}


PUT zhifou/doc/4
{
  "name":"石头",
  "age":29,
  "from":"gu",
  "desc":"粗中有细,狐假虎威",
  "tags":["粗", "大","猛"]
}

PUT zhifou/doc/5
{
  "name":"魏行首",
  "age":25,
  "from":"广云台",
  "desc":"仿佛兮若轻云之蔽月,飘飘兮若流风之回雪,mmp,最后竟然没有嫁给顾老二!",
  "tags":["闭月","羞花"]
}

GET zhifou/doc/_search
{
  "query": {
    "match_all": {}
  }
}
  • 需求1、查询from是gu的人的平均年龄。
GET zhifou/doc/_search
{
  "query": {
    "match": {
      "from": "gu"
    }
  },
  "aggs": {
    "my_avg": {
      "avg": {
        "field": "age"
      }
    }
  },
  "_source": ["name", "age"]
}

>>>查询结果
{
  "took" : 83,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 3,
    "max_score" : 0.6931472,
    "hits" : [
      {
        "_index" : "zhifou",
        "_type" : "doc",
        "_id" : "4",
        "_score" : 0.6931472,
        "_source" : {
          "name" : "石头",
          "age" : 29
        }
      },
      {
        "_index" : "zhifou",
        "_type" : "doc",
        "_id" : "1",
        "_score" : 0.2876821,
        "_source" : {
          "name" : "顾老二",
          "age" : 30
        }
      },
      {
        "_index" : "zhifou",
        "_type" : "doc",
        "_id" : "3",
        "_score" : 0.2876821,
        "_source" : {
          "name" : "龙套偏房",
          "age" : 22
        }
      }
    ]
  },
  "aggregations" : {
    "my_avg" : {
      "value" : 27.0
    }
  }
}
上例中,首先匹配查询from是gu的数据。在此基础上做查询平均值的操作,这里就用到了聚合函数,其语法被封装在aggs中,而my_avg则是为查询结果起个别名,封装了计算出的平均值。那么,要以什么属性作为条件呢?是age年龄,查年龄的什么呢?是avg,查平均年龄。
如果只想看输出的值,而不关心输出的文档的话可以通过size=0来控制
GET zhifou/doc/_search
{
  "query": {
    "match": {
      "from": "gu"
      }
    },
    "aggs":{
      "my_avg":{
        "avg": {
          "field": "age"
        }
      }
    },
    "size":0,
    "_source":["name","age"]
}

>>>查询结果
{
  "took" : 35,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 3,
    "max_score" : 0.0,
    "hits" : [ ]
  },
  "aggregations" : {
    "my_avg" : {
      "value" : 27.0
    }
  }
}
  • 需求2、查询年龄的最大值
GET zhifou/doc/_search
{
  "query": {
    "match_all": {}
  },
  "aggs": {
    "my_max": {
      "max": {
        "field": "age"
      }
    }
  },
  "size": 0, 
  "_source": ["name","age","from"]
}

>>>查询结果
{
  "took" : 10,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 5,
    "max_score" : 0.0,
    "hits" : [ ]
  },
  "aggregations" : {
    "my_max" : {
      "value" : 30.0
    }
  }
}
  • 需求3、查询年龄的最小值
GET zhifou/doc/_search
{
  "query": {
    "match_all": {}
  },
  "aggs": {
    "my_min": {
      "min": {
        "field": "age"
      }
    }
  },
  "size": 0, 
  "_source": ["name","age","from"]
}

>>>查询结果
{
  "took" : 2,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 5,
    "max_score" : 0.0,
    "hits" : [ ]
  },
  "aggregations" : {
    "my_min" : {
      "value" : 18.0
    }
  }
}
  • 需求4、查询符合条件的年龄之和
GET zhifou/doc/_search
{
  "query": {
    "match": {
      "from": "gu"
    }
  },
    "aggs": {
    "my_sum": {
      "sum": {
        "field": "age"
      }
    }
  },
  "size": 0, 
  "_source": ["name","age","from"]
}

>>>查询结果
{
  "took" : 4,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 3,
    "max_score" : 0.0,
    "hits" : [ ]
  },
  "aggregations" : {
    "my_sum" : {
      "value" : 81.0
    }
  }
}

十二、ES的分组查询

  • 需求: 要查询所有人的年龄段,并且按照1520,2025,25~30分组,并且算出每组的平均年龄。
GET zhifou/doc/_search
{
  "size": 0, 
  "query": {
    "match_all": {}
  },
  "aggs": {
    "age_group": {
      "range": {
        "field": "age",
        "ranges": [
          {
            "from": 15,
            "to": 20
          },
          {
            "from": 20,
            "to": 25
          },
          {
            "from": 25,
            "to": 30
          }
        ]
      }
    }
  }
}

>>>查询结果
{
  "took" : 9,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 5,
    "max_score" : 0.0,
    "hits" : [ ]
  },
  "aggregations" : {
    "age_group" : {
      "buckets" : [
        {
          "key" : "15.0-20.0",
          "from" : 15.0,
          "to" : 20.0,
          "doc_count" : 1
        },
        {
          "key" : "20.0-25.0",
          "from" : 20.0,
          "to" : 25.0,
          "doc_count" : 1
        },
        {
          "key" : "25.0-30.0",
          "from" : 25.0,
          "to" : 30.0,
          "doc_count" : 2
        }
      ]
    }
  }
}
上例中,在aggs的自定义别名age_group中,使用range来做分组,field是以age为分组,分组使用ranges来做,from和to是范围
  • 接下来,我们就要对每个小组内的数据做平均年龄处理。
GET zhifou/doc/_search
{
  "size": 0, 
  "query": {
    "match_all": {}
  },
  "aggs": {
    "age_group": {
      "range": {
        "field": "age",
        "ranges": [
          {
            "from": 15,
            "to": 20
          },
          {
            "from": 20,
            "to": 25
          },
          {
            "from": 25,
            "to": 30
          }
        ]
      },
      "aggs": {
        "my_avg": {
          "avg": {
            "field": "age"
          }
        }
      }
    }
  }
}

>>>查询结果
{
  "took" : 1,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 5,
    "max_score" : 0.0,
    "hits" : [ ]
  },
  "aggregations" : {
    "age_group" : {
      "buckets" : [
        {
          "key" : "15.0-20.0",
          "from" : 15.0,
          "to" : 20.0,
          "doc_count" : 1,
          "my_avg" : {
            "value" : 18.0
          }
        },
        {
          "key" : "20.0-25.0",
          "from" : 20.0,
          "to" : 25.0,
          "doc_count" : 1,
          "my_avg" : {
            "value" : 22.0
          }
        },
        {
          "key" : "25.0-30.0",
          "from" : 25.0,
          "to" : 30.0,
          "doc_count" : 2,
          "my_avg" : {
            "value" : 27.0
          }
        }
      ]
    }
  }
}

ES的聚合查询的总结:聚合函数的使用,一定是先查出结果,然后对结果使用聚合函数做处理

avg:求平均

max:最大值

min:最小值

sum:求和

十三、ES之Mappings

GET test

>>>查询结果
{
  "test" : {
    "aliases" : { },
    "mappings" : {
      "doc" : {
        "properties" : {
          "age" : {
            "type" : "long"
          },
          "desc" : {
            "type" : "text",
            "fields" : {
              "keyword" : {
                "type" : "keyword",
                "ignore_above" : 256
              }
            }
          },
          "name" : {
            "type" : "text",
            "fields" : {
              "keyword" : {
                "type" : "keyword",
                "ignore_above" : 256
              }
            }
          }
        }
      }
    },
    "settings" : {
      "index" : {
        "creation_date" : "1569133097594",
        "number_of_shards" : "5",
        "number_of_replicas" : "1",
        "uuid" : "AztO9waYQiyHvzP6dlk4tA",
        "version" : {
          "created" : "6080299"
        },
        "provided_name" : "test"
      }
    }
  }
}

由返回结果可以看到,分为两大部分:
第一部分关于t1索引类型相关的,包括该索引是否有别名aliases,然后就是mappings信息,
包括索引类型doc,各字段的详细映射关系都收集在properties中。

另一部分是关于索引t1的settings设置。包括该索引的创建时间,主副分片的信息,UUID等等。

1. mappings 是什么?

映射就是在创建索引的时候,有更多定制的内容,更加的贴合业务场景。
用来定义一个文档及其包含的字段如何存储和索引的过程。

2. 字段的数据类型

简单类型如文本(text)、关键字(keyword)、日期(data)、整形(long)、双精度
(double)、布尔(boolean)或ip。 可以是支持JSON的层次结构性质的类型,如对象或嵌套。
或者一种特殊类型,如geo_point、geo_shape或completion。为了不同的目的,
以不同的方式索引相同的字段通常是有用的。例如,字符串字段可以作为全文搜索的文本字段进行索引,
也可以作为排序或聚合的关键字字段进行索引。或者,可以使用标准分析器、英语分析器和
法语分析器索引字符串字段。这就是多字段的目的。大多数数据类型通过fields参数支持多字段。
  • 一个简单的映射示例
PUT mapping_test
{
  "mappings": {
    "test1":{
      "properties":{
        "name":{"type": "text"},
        "age":{"type":"long"}
      }
    }
  }
}
我们在创建索引PUT mapping_test1的过程中,为该索引定制化类型(设计表结构),添加一个映射类型test1;指定字段或者属性都在properties内完成。
GET mapping_test

>>>查询结果
{
  "mapping_test" : {
    "aliases" : { },
    "mappings" : {
      "test1" : {
        "properties" : {
          "age" : {
            "type" : "long"
          },
          "name" : {
            "type" : "text"
          }
        }
      }
    },
    "settings" : {
      "index" : {
        "creation_date" : "1570794586526",
        "number_of_shards" : "5",
        "number_of_replicas" : "1",
        "uuid" : "P4-trriPTxq-nJj89iYXZA",
        "version" : {
          "created" : "6080299"
        },
        "provided_name" : "mapping_test"
      }
    }
  }
}
返回的结果中你肯定很熟悉!映射类型是test1,具体的属性都被封装在properties中。

3. ES mappings之dynamic的三种状态

  • 一般的,mapping则又可以分为动态映射(dynamic mapping)和静态(显示)映射(explicit mapping)和精确(严格)映射(strict mappings),具体由dynamic属性控制。默认为动态映射
##### 默认为动态映射
PUT test4
{
  "mappings": {
    "doc":{
      "properties": {
        "name": {
          "type": "text"
        },
        "age": {
          "type": "long"
        }
      }
    }
  }
}

GET test4/_mapping
>>>查询结果
{
  "test4" : {
    "mappings" : {
      "doc" : {
        "properties" : {
          "age" : {
            "type" : "long"
          },
          "name" : {
            "type" : "text"
          },
          "sex" : {
            "type" : "text",
            "fields" : {
              "keyword" : {
                "type" : "keyword",
                "ignore_above" : 256
              }
            }
          }
        }
      }
    }
  }
}

#####添加数据
PUT test4/doc/1
{
  "name":"wangjifei",
  "age":"18",
  "sex":"不详"
}

#####查看数据
GET test4/doc/_search
{
  "query": {
    "match_all": {}
  }
}

>>>查询结果
{
  "took" : 8,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 1,
    "max_score" : 1.0,
    "hits" : [
      {
        "_index" : "test4",
        "_type" : "doc",
        "_id" : "1",
        "_score" : 1.0,
        "_source" : {
          "name" : "wangjifei",
          "age" : "18",
          "sex" : "不详"
        }
      }
    ]
  }
}
  • 测试静态映射:当elasticsearch察觉到有新增字段时,因为dynamic:false的关系,会忽略该字段,但是仍会存储该字段。
#####创建静态mapping
PUT test5
{
  "mappings": {
    "doc":{
      "dynamic":false,
      "properties": {
        "name": {
          "type": "text"
        },
        "age": {
          "type": "long"
        }
      }
    }
  }
}

#####插入数据
PUT test5/doc/1
{
  "name":"wangjifei",
  "age":"18",
  "sex":"不详"
}

####条件查询
GET test5/doc/_search
{
  "query": {
    "match": {
      "sex": "不详"
    }
  }
}

>>>查询结果
{
  "took" : 9,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 0,
    "max_score" : null,
    "hits" : [ ]
  }
}

#####查看所有数据
GET /test5/doc/_search
{
  "query": {
    "match_all": {}
  }
}

>>>查询结果
{
  "took" : 1,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 1,
    "max_score" : 1.0,
    "hits" : [
      {
        "_index" : "test5",
        "_type" : "doc",
        "_id" : "1",
        "_score" : 1.0,
        "_source" : {
          "name" : "wangjifei",
          "age" : "18",
          "sex" : "不详"
        }
      }
    ]
  }
}

  • 测试严格映射:当elasticsearch察觉到有新增字段时,因为dynamic:strict 的关系,就会报错,不能插入成功。
#####创建严格mapping
PUT test6
{
  "mappings": {
    "doc":{
      "dynamic":"strict",
      "properties": {
        "name": {
          "type": "text"
        },
        "age": {
          "type": "long"
        }
      }
    }
  }
}

#####插入数据
PUT test6/doc/1
{
  "name":"wangjifei",
  "age":"18",
  "sex":"不详"
}

>>>插入结果
{
  "error": {
    "root_cause": [
      {
        "type": "strict_dynamic_mapping_exception",
        "reason": "mapping set to strict, dynamic introduction of [sex] within [doc] is not allowed"
      }
    ],
    "type": "strict_dynamic_mapping_exception",
    "reason": "mapping set to strict, dynamic introduction of [sex] within [doc] is not allowed"
  },
  "status": 400
}

小结: 动态映射(dynamic:true):动态添加新的字段(或缺省)。 静态映射(dynamic:false):忽略新的字段。在原有的映射基础上,当有新的字段时,不会主动的添加新的映射关系,只作为查询结果出现在查询中。 严格模式(dynamic:strict):如果遇到新的字段,就抛出异常。一般静态映射用的较多。就像HTML的img标签一样,src为自带的属性,你可以在需要的时候添加id或者class属性。当然,如果你非常非常了解你的数据,并且未来很长一段时间不会改变,strict不失为一个好选择。

4. ES之mappings的 index 属性

  • index属性默认为true,如果该属性设置为false,那么,elasticsearch不会为该属性创建索引,也就是说无法当做主查询条件。
PUT test7
{
  "mappings": {
    "doc": {
      "properties": {
        "name": {
          "type": "text",
          "index": true
        },
        "age": {
          "type": "long",
          "index": false
        }
      }
    }
  }
}

####插入数据
PUT test7/doc/1
{
  "name":"wangjifei",
  "age":18
}

####条件查询数据
GET test7/doc/_search
{
  "query": {
    "match": {
      "name": "wangjifei"
    }
  }
}

>>>查询结果
{
  "took" : 18,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 1,
    "max_score" : 0.2876821,
    "hits" : [
      {
        "_index" : "test7",
        "_type" : "doc",
        "_id" : "1",
        "_score" : 0.2876821,
        "_source" : {
          "name" : "wangjifei",
          "age" : 18
        }
      }
    ]
  }
}

#####条件查询
GET test7/doc/_search
{
  "query": {
    "match": {
      "age": 18
    }
  }
}

>>>查询结果
{
  "error": {
    "root_cause": [
      {
        "type": "query_shard_exception",
        "reason": "failed to create query: {\n  \"match\" : {\n    \"age\" : {\n      \"query\" : 18,\n      \"operator\" : \"OR\",\n      \"prefix_length\" : 0,\n      \"max_expansions\" : 50,\n      \"fuzzy_transpositions\" : true,\n      \"lenient\" : false,\n      \"zero_terms_query\" : \"NONE\",\n      \"auto_generate_synonyms_phrase_query\" : true,\n      \"boost\" : 1.0\n    }\n  }\n}",
        "index_uuid": "fzN9frSZRy2OzinRjeMKGA",
        "index": "test7"
      }
    ],
    "type": "search_phase_execution_exception",
    "reason": "all shards failed",
    "phase": "query",
    "grouped": true,
    "failed_shards": [
      {
        "shard": 0,
        "index": "test7",
        "node": "INueKtviRpO1dbNWngcjJA",
        "reason": {
          "type": "query_shard_exception",
          "reason": "failed to create query: {\n  \"match\" : {\n    \"age\" : {\n      \"query\" : 18,\n      \"operator\" : \"OR\",\n      \"prefix_length\" : 0,\n      \"max_expansions\" : 50,\n      \"fuzzy_transpositions\" : true,\n      \"lenient\" : false,\n      \"zero_terms_query\" : \"NONE\",\n      \"auto_generate_synonyms_phrase_query\" : true,\n      \"boost\" : 1.0\n    }\n  }\n}",
          "index_uuid": "fzN9frSZRy2OzinRjeMKGA",
          "index": "test7",
          "caused_by": {
            "type": "illegal_argument_exception",
            "reason": "Cannot search on field [age] since it is not indexed."
          }
        }
      }
    ]
  },
  "status": 400
}

5. ES 之 mappings 的copy_to属性

PUT test8
{
  "mappings": {
    "doc": {
      "dynamic":false,
      "properties": {
        "first_name":{
          "type": "text",
          "copy_to": "full_name"
        },
        "last_name": {
          "type": "text",
          "copy_to": "full_name"
        },
        "full_name": {
          "type": "text"
        }
      }
    }
  }
}

#####插入数据
PUT test8/doc/1
{
  "first_name":"tom",
  "last_name":"ben"
}
PUT test8/doc/2
{
  "first_name":"john",
  "last_name":"smith"
}

#####查询所有
GET test8/doc/_search
{
  "query": {
    "match_all": {}
  }
}

>>>查询结果
{
  "took" : 4,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 2,
    "max_score" : 1.0,
    "hits" : [
      {
        "_index" : "test8",
        "_type" : "doc",
        "_id" : "2",
        "_score" : 1.0,
        "_source" : {
          "first_name" : "john",
          "last_name" : "smith"
        }
      },
      {
        "_index" : "test8",
        "_type" : "doc",
        "_id" : "1",
        "_score" : 1.0,
        "_source" : {
          "first_name" : "tom",
          "last_name" : "ben"
        }
      }
    ]
  }
}

#####条件查询
GET test8/doc/_search
{
  "query": {
    "match": {
      "first_name": "tom"
    }
  }
}

>>>查询结果
{
  "took" : 2,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 1,
    "max_score" : 0.2876821,
    "hits" : [
      {
        "_index" : "test8",
        "_type" : "doc",
        "_id" : "1",
        "_score" : 0.2876821,
        "_source" : {
          "first_name" : "tom",
          "last_name" : "ben"
        }
      }
    ]
  }
}

######条件查询
GET test8/doc/_search
{
  "query": {
    "match": {
      "full_name": "ben"
    }
  }
}

>>>查询结果
{
  "took" : 3,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 1,
    "max_score" : 0.2876821,
    "hits" : [
      {
        "_index" : "test8",
        "_type" : "doc",
        "_id" : "1",
        "_score" : 0.2876821,
        "_source" : {
          "first_name" : "tom",
          "last_name" : "ben"
        }
      }
    ]
  }
}
上例中,我们将first_name和last_name都复制到full_name中。并且使用full_name查询也返回了结果
  • 既要查询tom还要查询smith该怎么办?
GET test8/doc/_search
{
  "query": {
    "match": {
      "full_name": {
        "query": "tom smith",
        "operator": "or"
      }
    }
  }
}

>>>查询结果
{
  "took" : 3,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 2,
    "max_score" : 0.2876821,
    "hits" : [
      {
        "_index" : "test8",
        "_type" : "doc",
        "_id" : "2",
        "_score" : 0.2876821,
        "_source" : {
          "first_name" : "john",
          "last_name" : "smith"
        }
      },
      {
        "_index" : "test8",
        "_type" : "doc",
        "_id" : "1",
        "_score" : 0.2876821,
        "_source" : {
          "first_name" : "tom",
          "last_name" : "ben"
        }
      }
    ]
  }
}
operator参数为多个条件的查询关系也可以是and
  • 上面的查询还可以简写成一下:
GET test8/doc/_search
{
  "query": {
    "match": {
      "full_name": "tom smith"
    }
  }
}
  • copy_to还支持将相同的属性值复制给不同的字段。
PUT test9
{
  "mappings": {
    "doc": {
      "dynamic":false,
      "properties": {
        "first_name":{
          "type": "text",
          "copy_to": ["full_name1","full_name2"]
        },
        "last_name": {
          "type": "text",
          "copy_to": ["full_name1","full_name2"]
        },
        "full_name1": {
          "type": "text"
        },
        "full_name2":{
          "type":"text"
        }
      }
    }
  }
}

####插入数据
PUT test9/doc/1
{
  "first_name":"tom",
  "last_name":"ben"
}

PUT test9/doc/2
{
  "first_name":"john",
  "last_name":"smith"
}

####条件查询
GET test9/doc/_search
{
  "query": {
    "match": {
      "full_name1": "tom smith"
    }
  }
}

>>>查询结果
{
  "took" : 7,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 2,
    "max_score" : 0.2876821,
    "hits" : [
      {
        "_index" : "test9",
        "_type" : "doc",
        "_id" : "2",
        "_score" : 0.2876821,
        "_source" : {
          "first_name" : "john",
          "last_name" : "smith"
        }
      },
      {
        "_index" : "test9",
        "_type" : "doc",
        "_id" : "1",
        "_score" : 0.2876821,
        "_source" : {
          "first_name" : "tom",
          "last_name" : "ben"
        }
      }
    ]
  }
}

#####条件查询
GET test9/doc/_search
{
  "query": {
    "match": {
      "full_name2": "tom smith"
    }
  }
}

>>>查询结果
{
  "took" : 7,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 2,
    "max_score" : 0.2876821,
    "hits" : [
      {
        "_index" : "test9",
        "_type" : "doc",
        "_id" : "2",
        "_score" : 0.2876821,
        "_source" : {
          "first_name" : "john",
          "last_name" : "smith"
        }
      },
      {
        "_index" : "test9",
        "_type" : "doc",
        "_id" : "1",
        "_score" : 0.2876821,
        "_source" : {
          "first_name" : "tom",
          "last_name" : "ben"
        }
      }
    ]
  }
}
full_name1 full_name2两个字段都可以查出来

6. ES 之mappings的对象属性

  • 首先先看看ES自动创建的mappings
PUT test10/doc/1
{
  "name":"wangjifei",
  "age":18,
  "info":{
    "addr":"北京",
    "tel":"18500327026"
  }
}

GET test10

>>>查询结果
{
  "test10" : {
    "aliases" : { },
    "mappings" : {
      "doc" : {
        "properties" : {
          "age" : {
            "type" : "long"
          },
          "info" : {
            "properties" : {
              "addr" : {
                "type" : "text",
                "fields" : {
                  "keyword" : {
                    "type" : "keyword",
                    "ignore_above" : 256
                  }
                }
              },
              "tel" : {
                "type" : "text",
                "fields" : {
                  "keyword" : {
                    "type" : "keyword",
                    "ignore_above" : 256
                  }
                }
              }
            }
          },
          "name" : {
            "type" : "text",
            "fields" : {
              "keyword" : {
                "type" : "keyword",
                "ignore_above" : 256
              }
            }
          }
        }
      }
    },
    "settings" : {
      "index" : {
        "creation_date" : "1570975011394",
        "number_of_shards" : "5",
        "number_of_replicas" : "1",
        "uuid" : "YvMGDHxkSri0Lgx6GGXiNw",
        "version" : {
          "created" : "6080299"
        },
        "provided_name" : "test10"
      }
    }
  }
}
  • 现在如果要以info中的tel为条件怎么写查询语句呢?
GET test10/doc/_search
{
  "query": {
    "match": {
      "info.tel": "18500327026"
    }
  }
}

>>>查询结果
{
  "took" : 5,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 1,
    "max_score" : 0.2876821,
    "hits" : [
      {
        "_index" : "test10",
        "_type" : "doc",
        "_id" : "1",
        "_score" : 0.2876821,
        "_source" : {
          "name" : "wangjifei",
          "age" : 18,
          "info" : {
            "addr" : "北京",
            "tel" : "18500327026"
          }
        }
      }
    ]
  }
}
info既是一个属性,也是一个对象,我们称为info这类字段为对象型字段。该对象内又包含addr和tel两个字段,如上例这种以嵌套内的字段为查询条件的话,查询语句可以以字段点子字段的方式来写即可

7. ES之mappings的settings 设置

  • 在创建一个索引的时候,我们可以在settings中指定分片信息:
PUT test11
{
  "mappings": {
    "doc": {
      "properties": {
        "name": {
          "type": "text"
        }
      }
    }
  }, 
  "settings": {
    "number_of_replicas": 1,
    "number_of_shards": 5
  }
}
number_of_shards是主分片数量(每个索引默认5个主分片),而number_of_replicas是复制分片,默认一个主分片搭配一个复制分片。

8. ES 之mappings的ignore_above参数

  • ignore_above参数仅针对于keyword类型有用
# 这样设置是会报错的
PUT test12
{
  "mappings": {
    "doc": {
      "properties": {
        "name": {
          "type": "text",
          "ignore_above":5
        }
      }
    }
  }
}

>>>显示结果
{
  "error": {
    "root_cause": [
      {
        "type": "mapper_parsing_exception",
        "reason": "Mapping definition for [name] has unsupported parameters:  [ignore_above : 5]"
      }
    ],
    "type": "mapper_parsing_exception",
    "reason": "Failed to parse mapping [doc]: Mapping definition for [name] has unsupported parameters:  [ignore_above : 5]",
    "caused_by": {
      "type": "mapper_parsing_exception",
      "reason": "Mapping definition for [name] has unsupported parameters:  [ignore_above : 5]"
    }
  },
  "status": 400
}
##### 正确的打开方式
PUT test12
{
  "mappings": {
    "doc": {
      "properties": {
        "name": {
          "type": "keyword",
          "ignore_above":5
        }
      }
    }
  }
}

PUT test12/doc/1
{
  "name":"wangjifei"
}

##### 这样查询能查出结果
GET test12/doc/_search
{
  "query": {
    "match_all": {}
  }
}

>>>查询结果
{
  "took" : 1,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 1,
    "max_score" : 1.0,
    "hits" : [
      {
        "_index" : "test12",
        "_type" : "doc",
        "_id" : "1",
        "_score" : 1.0,
        "_source" : {
          "name" : "wangjifei"
        }
      }
    ]
  }
}


######这样查询不能查询出结果
GET test12/doc/_search
{
  "query": {
    "match": {
      "name": "wangjifei"
    }
  }
}

>>>查询结果
{
  "took" : 1,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 0,
    "max_score" : null,
    "hits" : [ ]
  }
}
上面的例子证明超过ignore_above设定的值后会被存储但不会建立索引
  • 那么如果字符串的类型是text时能用ignore_above吗,答案是能,但要特殊设置:
PUT test13
{
  "mappings": {
    "doc":{
      "properties":{
        "name1":{
          "type":"keyword",
          "ignore_above":5
        },
        "name2":{
          "type":"text",
          "fields":{
            "keyword":{
              "type":"keyword",
              "ignore_above": 10
            }
          }
        }
      }
    }
  }
}

PUT test13/doc/1
{
  "name1":"wangfei",
  "name2":"wangjifei hello"
}

##### 能查出来
GET test13/doc/_search
{
  "query": {
    "match_all": {}
  }
}

>>>查询结果
{
  "took" : 4,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 1,
    "max_score" : 1.0,
    "hits" : [
      {
        "_index" : "test13",
        "_type" : "doc",
        "_id" : "1",
        "_score" : 1.0,
        "_source" : {
          "name1" : "wangfei",
          "name2" : "wangjifei hello"
        }
      }
    ]
  }
}

##### 通过name1 字段查不出来,因为设置的是keyword类型 限制了5个字符的长度,
##### 存储的值超过了最大限制
GET test13/doc/_search
{
  "query": {
    "match": {
      "name1": "wangfei"
    }
  }
}

>>>查询结果
{
  "took" : 2,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 0,
    "max_score" : null,
    "hits" : [ ]
  }
}

##### 通过name2 字段能查出来,虽然限制了5个字符的长度,存储的值超过了最大限制,但是,
##### 当字段类型设置为text之后,ignore_above参数的限制就失效了。(了解就好,意义不大)
GET test13/doc/_search
{
  "query": {
    "match": {
      "name2": "wangjifei"
    }
  }
}

>>>查询结果
{
  "took" : 1,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 1,
    "max_score" : 0.2876821,
    "hits" : [
      {
        "_index" : "test13",
        "_type" : "doc",
        "_id" : "1",
        "_score" : 0.2876821,
        "_source" : {
          "name1" : "wangfei",
          "name2" : "wangjifei hello"
        }
      }
    ]
  }
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,222评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,455评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,720评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,568评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,696评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,879评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,028评论 3 409
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,773评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,220评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,550评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,697评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,360评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,002评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,782评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,010评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,433评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,587评论 2 350

推荐阅读更多精彩内容